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The strong interest in recent years in analyzing chaotic dynamical systems 
according to their asymptotic behavior has led to various definitions of fractal 
dimension and corresponding methods of statistical estimation. In this paper we 
first provide a rigorous mathematical framework for the study of dimension, 
focusing on pointwise dimension a(x) and the generalized Renyi dimensions 
D(q), and give a rigorous proof of inequalities first derived by Grassberger and 
Procaccia and Hentschel and Procaccia. We then specialize to the problem of 
statistical estimation of the correlation dimension v and inh~rmatiou dmlension 
er. It has been recognized for some time that the error estimates accompanying 
the usual procedures (which generally involve least squares methods and nearest 
neighbor calculationsj grossly underestimate the true statistical error involved. 
In least squares analyses of v and a we identify sources of error not previously 
discussed in the literature and address the problem of obtaining accurate error 
estimates. We then develop an estimation procedure for a which corrects for an 
important bias term (the local measure density) and provides confidence inter- 
vals for a. The general applicability of this method is illustrated with various 
numerical examples. 

KEY WORDS: Information dimension; correlation dimension; fractal dimen- 
sion; fractal measures; dynamical systems; attractors. 

1. I N T R O D U C T I O N  

Over the past decade there has been much interest in the asymptotic 
behavior of dynamical systems, particularly in the case of systems exhibit- 
ing "chaotic" behavior. A feature of many chaotic systems is the apparent 
existence of a "strange" or "fractal" attracting set (or attractor) on to which 
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the trajectories of the system eventually settle. Considerable effort has gone 
into attempts to describe and quantify attractors and this has led to the 
development of several definitions offracta!  dimension. The early papers of 
Farmer et a/., ~28) Grassberger and Procaccia, t3~ and Hentschel and 
Procaccia t37) introduced many of these notions and additionally provided 
conjectures (not all correct) and some proofs concerning the relationships 
among them. The recent interest in "multifractal" theory, in large part 
initiated by the paper of Halsey et al., ~35) has led to an increased under- 
standing of the role and meaning of the various dimension concepts in 
dynamical systems, providing, in particular, a link between the variation of 
pointwise dimension in small neighborhoods and the generalized Renyi 
dimensions. Nonetheless, the standard approach to definitions and proofs 
(which generally consists of covering the attractor by a grid of nonoverlap- 
ping cubes) requires certain regularity assumptions (often not explicitly 
stated), such as existence of a limit (as cube size goes to zero) which does 
not depend on the choice of grid. One goal of this paper is to present and 
clarify the different definitions of dimension in a systematic and mathemati- 
cally rigorous way, developing the relevant properties and inequalities 
under minimal assumptions. This is the content of Section 2. The remainder 
of the paper specializes to a study of the correlation dimension v and the 
information dimension a (to be defined in Section 2), focusing in particular 
on the statistical techniques used to estimate these quantities. Thus, from 
the point of view of statistics, our attention is concentrated on measure- 
dependent concepts of dimension; that is, concepts which require the exis- 
tence of a natural probability distribution ~ on the attractor. [Typically, 
for a subset B of the attractor, ~(B) represents the long-run proportion of 
time a system trajectory spends in B.] Measure-dependent notions of 
dimension incorporate information about the actual dynamics of the 
system and are often related to relevant dynamical quantities such as 
Lyapunov exponents and singularity spectra (e.g., refs. 35, 45, 46, and 63). 
We will not attempt any solution to the problem of estimating the fractal 
dimension (taken here to be the Hausdorff dimension or perhaps the 
capacity) of the attractor itself viewed solely as a geometric object. In 
general, estimation of a geometric fractal dimension is a particularly hard 
problem. The computational difficulties involved with box-counting algo- 
rithms are well known, t3a) but it is important to realize that the difficulty 
in estimating geometric quantities from data goes deeper than simply the 
problem of finding an efficient algorithm. Treating data merely as a 
geometric set of points ignores the inherent probabilistic nature of its struc- 
ture. A finite data set will reveal only certain regions of an attractor (those 
with highest probability) and geometric dimensions may be rendered 
inestimable (as remarked by a referee) except in special circumstances. 
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Some difficulties and solutions concerning estimation of geometric dimen- 
sions are presented in Tricot etal., ~62~ Dubucetal . ,  ~z21 and Taylor and 
TayiorJ 56~ For a history of the different definitions of dimension and 
corresponding statistical techniques we refer the reader to Farmer et aL, ~28~ 
Badii and Politi, ~ Eckmann and Ruelle, ~231 Mayer-Kress/4~ and Paladin 
and VulpianU 46) 

In Section 3 we critique the typical least squares procedure performed 
when estimating dimension. (Our analysis is done in terms of the correla- 
tion dimension, but the basic conclusions are equally applicable to least 
square s procedures for estimating a.) We show that distributions on attrac- 
tors typically give rise to a spatial correlation structure that features a 
wandering intercept; this can lead to failure of the slopes to converge to the 
desired parameter v as the radius r ~ 0. Furthermore, unlike the simple 
linear regression model, the observed proportions at different radii con.- 
stitute correlated observations with unequal variances, and hence the usual 
errors associated with a simple linear regression (such as the mean squared 
deviation from the least squares line) are totally inadequate to describe the 
actual statistical error in the problem. Denker and Keller ~'-~1 made an 
important contribution by developing the theory leading to the asymptotic 
joint distribution and covariance structure of the observed proportions for 
time series data taken from dynamical systems with adequate mixing 
properties. It is a theory which appears to be underused in practice, so in 
Section 3.2 we provide the explicit form of the asymptotic covariance 
matrix as well as explicit estimators for the components of the matrix. The 
technique is seen to perform extremely well in a numerical study of the 
Kaplan-Yorke map. 

At the beginning of Section 4 we note that generally the problem of a 
wandering intercept is more severe for least squares procedures involving a; 
this is due in part to the variability from point to point caused by the 
"fractalness" of the measure, and in part to the effects of the local measure 
density at different points x. The remainder of Section 4 deals with the 
development of a nearest neighbor technique for obtaining confidence 
intervals for tr which corrects for the bias due to the local measure density. 
This technique arose out of rigorous results (~9'2~ on the asymptotic 
behavior of nearest neighbors from different classes of distributions. 
Naturally no technique can be expected to work well in all cases, but we 
present several examples to illustrate the general adaptability of this 
method to a variety of dynamical systems. Not surprisingly, the data 
requirements increase rapidly as the true underlying dimension increases. 
We expect that modifications of this method (perhaps by incorporating a 
set of nearest neighbors) will lead to more efficient use of the data and 
improved estimates. 
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2. D I M E N S I O N  DEFINIT IONS,  PROPERTIES,  A N D  
INEQUALIT IES 

We begin first with a general discussion of dimension and probability 
distributions before specializing to the case of dynamical systems. The 
reader is likely familiar with the definition of Hausdor[[ dimension (which 
has long been associated with the concept of fractats) and perhaps less 
familiar with the much more recent notion of packing dimension. ~7"5~'~1~ 
While Hausdorff dimension measures the size of a set by considering 
optimal coverings by sets of small diameter, packing dimension measures 
size by considering optimal packings of the set by small disjoint balls cen- 
tered at points of the set. (For reasonable sets the Hausdorff and packing 
dimensions will agree.) The notion of packing dimension has turned out to 
be the missing key in many questions concerning dimension, and its intro- 
duction allows us to state various theorems in a very complete way. We 
therefore give precise definitions of both Hausdorff and packing dimensions 
below. 

L e t . / / b e  a metric space with metric p, and let E c ./#. By a 6-covering 
of E we will mean a countable collection {Sk}k of subsets of ./'g with 
diameter p(S~)<~6 such that E___ (,)k Sk. We will define a 6-packing of E to 
be a countable disjoint collection {B(Xk, rk)}k of closed balls centered at 
points .v~ ~ E with radius r k ~< 6/2. (Note that a h-packing need not be a 
covering of E and in fact generally will not cover, due to the disjointness 
constraint.) 

The (~, 6)-outer Hausdorff measure H'a(E) is defined to be 

t of } 
while the (~, 6)-premeasure P~(E) is defined by 

P;(E)=sup{~p(Bk)=l{BkIkisaa-packingofE } (2.2) 

The Hausdorff measure H=(E) is then obtained by letting the covering size 
a go to zero: 

H=(E) = lim H~(E) (2.3) 
6 ~ 0  

while the packing measure U'(E) is constructed by a two-stage procedure 
as the packing size 6 tends to zero: 

_P'(E) = l im P](E) (2.4)  
6 ~ 0  
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and then 

The second step is necessary to ensure that P~ is a (countably-. 
additive) measure, a property already satisfied by HL (If we used P~ to 
define a dimensional index, the result would be a packing analogue of 
capacity. We will not discuss capacity, but a definition can be found in 
Farmer et a/. (281) 

The Hausdorff dimension dim(E) and the packing dimension Dim(E) 
are then defined by 

dim(E) = inf{a [ H=(E)= 0} = sup{~t I H=(E) = ~ } 
(2.6) 

Dim(E) = inf{ct ] P=(E) = 0} = sup{~ I P~(E) = ~ } 

The properties of Hausdorff measure and dim are discussed in 
Rogers ~s~ and Falconer, (27) while the properties of packing measure and 
Dim are developed in Taylor and Trico(57'58) and Saint Raymond and 
Tricot. (52) It is a known result that in a separable metric space P~(E)>I. 
H~(E) and, as a consequence, Dim(E)>~dim(E). Taylor ~55t has suggested 
that the term "fractal" be reserved for sets E which satisfy the condition 
dim(E) = Dim(E), thereby forcing some degree of regularity in the struc- 
ture of the set. Standard self-similar sets will meet this requirement. [The 
reader should not confuse this condition with the much more stringent 
restriction requiring equality of dim(E) and capacity C(E). The set of 
rational numbers Q satisfies d im(Q)= Dim(Q)=0  while C(Q)=  I.] A sel 
E for which dim(E) r Dim(E) might be considered hopelessly irregular. We 
will see shortly that, from a statistical viewpoint, equality of the Hausdorff 
and packing dimensions is exactly what is needed to obtain good theoreti- 
cal results. 

We now wish to connect the above concepts of dimension (of sets) 
with probability distributions living on the space. If ~ is a probability 
measure on the Borel sets of ..r the distribution of ~-mass with respect 
to the Hausdorff and packing dimensions can be described by related 
probability measures ~ and ,,~p defined on the Borel sets of [0, ~ ]  via 

~,,H( [0, ct] ) = sup{ ,~,~(D) I dim(D) ~< ct } 
(2.7) 

,,q,([0, ~]) = sup{.~,~,.(O) I Dim(D) ~<~} 

~H (with the alternate notation ~ )  is discussed in Cutler, 1~4~ while ~p  is 
introduced in Cutler. t j 8~ We always have ~ ~( [0, ct ]) ~> ~ p( [0, �9 ] ) because 



656 Cutler 

of the inequality dim(E) ~< Dim(E). We will say that ~,. is dimension regular 
if ~H = ~ , .  Most measures arising in practice appear to satisfy this 
regularity condition (it takes work to build examples where ~H r ~P). In 
general, all manner of distributions are possible candidates for ~,H and ,~p; 
to each probability distribution co defined on [0, N] corresponds infinitely 
many probability measures ~ on R u satisfying r Under 
certain circumstances (such as in the case of smooth ergodic dynamical 
systems, to be discussed below) the situation simplifies enormously; both 
mH and ~ p  collapse to point masses. We say that ~ is of exact Hausdorff 
(respectively, packing) dimension if there exists ~ >/0 such that ~H =6~ 
(respectively, ,,np=6~), where 6~ denotes the unit mass at ~. Note that 
~H = 6~ if and only if ~,,~ can be supported on some set of Hausdorff dimen- 
sion ~ but has no mass on any set of smaller dimension. (It is possible, even 
in smooth ergodic systems, for ~ to be of exact Hausdorff dimension �9 but 
of exact packing dimension/r where ~ 4:/~. Hence dimension regularity is 
not automatic. We will say more about this later.) If ~ .  = e.~ = 6,,  we call 
the common value a the information dimension of ,m.. (Otherwise, we say 
the information dimension does not exist.) 

Remark. Two other approaches to defining information dimension 
exist, both of which coincide with ours if ~. is suitably regular and exact- 
dimensional (in both the Hausdorff and packing sense}. It is not un- 
common to see the definition ~r* = inf{dim(E) I ~ ( E ) =  1 }, which considers 
only the Hausdorff dimension of the largest set needed to support Cy,.. The 
R6nyi dimension approach, perhaps most common, is a little different (see 
Farmer et aL ~2s) or Hentschel and procaccia ~371) and actually corresponds 
to computing an average. Specifically, covering the attractor by the mini- 
mum possible number N(e) of cubes C, of side length ~, the information 
dimension is often taken to be 

cr** = lim I(~) N(~) 0log 1/~ where l ( e )=  - ~ ~(Ck) log ~ ( C , )  (2.8) 

assuming that this limit exists and is well defined. See the last comment in 
the proof of Theorem 2.2 for details on the relationship between tr** and 
our approach. A connection between tr** and entropy is made via the 
Shannon-McMillan-Breiman theorem (see BillingsleytS~). The advantages 
to our approach are, first, that it does not require any (hidden) assump- 
tions on the measure structure, and, second, that the concept of "informa- 
tion dimension" is allowed to exist precisely in those situations where it has 
a clear-cut meaningful interpretation and is estimable from data (this 
connects with certain statistical properties of data, discussed in Section 4.) 
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The dimension structure of ~ can be explored in even greater detail by 
considering the pointwise mappings of ~ into [0, co ] defined by 

an(x) = lira inf log ~(B(x, r)) 
~ o log r 

ap(x) = lim sup 
�9 ~ 0 log r 

log ~(B(x,  r)) 
(2.9) 

Defining the preimage sets D~ and D~ by 

D~ : {x [ aH(X)~<Ct}, D~= {Xlap(X)<,ct} 

it can be shown ~5"~"t that 

(2.1o) 

dim(D~) ~< ct, 

mH([0, Ct]) = ~(D~) ,  

Dim(D~,) ~< ~ (2.11) 

roB([0, ~ ] ) =  r (2.12) 

Equation (2.12) implies that if a point X is chosen randomly according to 
the measure ~ ,  aH(X ) and aa(X) may be regarded as random variables on 
,//r with distributions ~H and ~p ,  respectively. [Hence r and ~ p  are 
completely specified by knowledge of aH(X ) and ap(X).] It is clear that ~,~. 
is dimension regular if and only if an(x ) = Op(X) ~-a.s. [The "only if" part 
follows from the fact that we always have the inequality ap(X)~> all(x). ] 
We also see that ~, is of exact Hausdorff (respectively, packing) dimension 
~t if and only if a n ( x ) =  �9 ~-a.s. [respectively, trp(X)= ~ ~-a.s.]. 

Remark. Relationships between the pointwise limit 

lim log m(B(x, r)) 
,~o~ log r 

and the dimension behavior of ,~,~ have been known or conjectured for 
some time. Young '~1 proved that if , re(S)>0 and for every x s S  

6 ~< lim inf l~ ~(B(x,  r)) ~< lim sup log m(B(x, r)) ~< d 
- � 9  l o g  r � 9  l o g  r 

then 6 ~< dim(S)~< d. The first results of this kind were apparently proved 
by BillingsleyJ 6'7~ Tricot t6~ expanded on some of Billingsley's results and 
also discussed the concept of regularity. In Cutler "4'~5~ it is shown explicitly 
that the "lim inf" in (2.9) describes the distribution of H-mass with respect 
to Hausdorff dimension; the relationship between "lira sup" and packing 
dimension is developed in Cutler. "8~ 
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Note that Eq. (2.11) provides some information about the structure 
of the preimages D~ and D~,, specifically giving upper bounds on 
the Hausdorff/packing dimensions of these sets. This is connected with the 
current theory of multifractals, where the chief point of interest is the 

= -  { x l a u ( x ) =  behavior of the function f (~)=dim(Dg) ,  where D o -  
ap(x) =~}. Most examples studied so far in multifractal theory possess 
sufficient self-similarity or regularity in the measure structure that there is 
no real distinction between Hausdorff and packing dimensions [and f(~) 
exhibits smooth properties as a function of a]. See refs. 3, 4, 11, 13, 32, 35, 
46, and 49. 

We define the average Hausdor]f dimension ffH and average packing 
dimension 6p by 

6H= E(a~dX))= f a.(x),,Mdx)= f ~ ,,,,jddT) 

rye = E(ap(X))= f a,.(x) .Mdx)= f ~ ~.q.(d~) 

(2.13) 

if #H = 6,, (which will occur if and only if Cy,, is dimension regular), it might 
be reasonable to call the common value ff the average in.fi)rmation dimen- 
sion of ,J~. Obviously, if ~,~ is additionally exact-dimensional, we have d = a. 

The mappings oH(x) and ae(x) enable us to study the pointwise 
scaling behavior of m in small neighborhoods. The generalized R6nyi 
dimensions, introduced in Hentschel and Procaccia/3v; enable us to study 
global scaling properties of ~.  We will use an Lq-norm approach to defining 
these quantities (Chapter3 of Rudin ~s~) provides the basic theory of L q 
spaces.) A parallel development of the generalized dimensions, using grids 
of cubes, can be found in Beck. ~ 

For each r > 0 let Vr(x) = ~(B(x, r)). Then, for q 4: 0, we define the L ~ 
norm of V, by 

H V r l l q  = E(Vr(X)q) ~/q= I f  Vr(X) q ~r i/q (2.14) 

Such norms are usually only defined for q > 0, but we will allow q < 0 with 
the understanding that ]lVrllq=O if E(Vr(X)q)=oo for q<0 .  Since 
0~<Vr~<l, we clearly have []V, Ijq~<l when q>0 .  However, E(Vr(X)" ) 
may explode for q < 0. A simple example is the probability measure ~ with 
density function g(x)=e -~ for x > 0 .  It is easy to determine that 
E(Vr(X) q) = 0o whenever q ~< -1 .  

The following theorem summarizes some well-known results on L q 
norms. We include the proof of the basic inequalities for completeness. 
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Theorem 2.1. The norms {[IV~[lq}q (qr increase as a function 
of q. Furthermore,  limq_.o~ [IVr[Iq=][Vr][oo (where IIVA~ denotes the 
essential supremum of Vr), and limq ~ o+ II VAq = exp(E(log VAX))). 

ProoL The norm inequalities are a simple consequence of Jensen's 
inequality, which states that if ~b is a convex function, then 
E((~(X)) ~ ~(E(X)). Noting that ~b(t) = t" is convex for ~ < 0 or ~ ~> 1 (and 
concave for 0 < ~ < 1 ), we obtain 

E(V~(X)q)=E((VAX)P)q/P)>~E(VAX)P) u/p if 0 < p < q  o r p < 0 < q  

but ~ E(Vr(X)P) q/p if p < q < 0 

We then see that t[Wr[[p~[lVr[[q whenever p<q. Refer to Rudin (Sj) for 
information on the other statements in the theorem. | 

We now define the lower and upper qth moment dimensions (q :~ O) by 

m - ( q )  = lim in( l~ 
II VrIl~ 

~ o log r 

log I[ w~[I 
m + (q) = lim sup 

~ o log r 

(2.15) 

If m (q)=m+(q), we denote the common value by m(q). Note that 
m(q)= ~/J is possible. The generalized &;nyi dimensions D(q) [under the 
assumption mfq) exists] are then defined by 

D(q)=m(q-  1) for q:~ 1 (2.16) 

Remark. When defining the R6nyi dimensions using grids of cubes 
(as done in Beck (~J) it is more natural to structure the q-scale so that q = I 
(rather than q = 0 )  is the undefined point, which produces Eq. (2.16). 

We now present some inequalities involving the moment  dimensions 
and the average Hausdorff/paeking dimensions which generalize some of 
the inequalities in Hentschel and Procaccia (37) and Beck. (3) 

Theorem 2.2. Let ~ be a probability measure defined on the Borel 
sets of a compact  set J / _  •N. Then: 

(a) {m (q)} and {m+(q)}, q#O,  decrease as functions ofq.  

(b) m (p)~>6 H and 6p>~m+(q) wheneverp<O<q. 

(c) If ~t is dimension regular, then m (p)>~6H=6e=~m+(q)  
whenever p < 0 < q. 
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Proof. 
first inequality in (b), note that 

5H = E(a . (X ) )  

= E(l im inf l~ 5(X!']  
\ r ~ o  Iogr ] 

<~ li iofmn E \  logr ] 

= liminf E (  l~ V'(X)P.~ 
\ Iog r p J 

~< lim inf log E(V.(X) p) 
.~o logr p 

= In (p) 

To obtain the second inequality in (b), write 

#,, = E(%(X)) 

log v,(x)) 
= E  limsup Io--gr J 

r~O E( l~  Vr(X)~ >tlimsup \ l-ogr J 

= lira sup E (log. Vr()t")q~ 
r~0 \ log r q J 

log E(Vr(X) q) 
~> lira sup 

~ o log r q 

=m+(q)  

Part (a) is immediate from (2.15) and Theorem 2.1. To see the 

by Fatou's lemma 

by Jensen's inequality 
when p < 0 

if the functions are 
uniformly integrable 

by Jensen's inequality 
when q > 0 

In Appendix A we prove that the functions involved are always uniformly 
integrable, so the above argument is rigorous. Part (c) now follows from 
(b) and the fact that dimension regularity is equivalent to the equality 
d H = 6p. Further note that under this equality we can exchange the limit 
and expectation operator to obtain 

log (log 
~=E im io-U J ~imE\ log~ / 

using a more careful definition of a** than that given in (2.8). | 
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It is obviously of interest to determine the conditions under which 
m - ( q )  = m +(q) and under which we have continuity across the boundary 
point q = 0. If ~ is dimension regular and continuity exists across q = 0, it 
is then reasonable to define m(0)=  D(1 )=  6. 

In this paper we will chiefly be interested in the statistical estimation 
of a (under the assumption that ~r is of exact Hausdorff/packing dimen- 
sion tr) and of the correlation dimension v = m( 1 ) = D(2). Although a member 
of the R6nyi dimensions, correlation dimension was introduced earlier, as 
a separate concept, by Grassberger and Procaccia. ~176 It is clear that the 
choice q = ! plays a special role among the t q norms. Letting C(r) denote 
the probability that two random, independent points (chosen according 
to ~ )  are no more than distance r apart, we have 

C(r) = JJ I m,~(x, y) ~n(dx) ~r 

[where A(r)= {(x, y)] f lx -y[ I  ~<r}J 

= E(~,(B(X, r))) the mean or expected mass in a random 
ball of radius r 

= 1[ V, IIj the L 1 norm of V, 

C(r) is often called the spatial correlation integral. Note then that 

v = lim log ]1 V,[[I _ lira log C(r) 
,~o  logr  , . o  logr  

(2.17) 

provided this limit exists. Thus, v describes the asymptotic (as r--}0) 
scaling behavior of thc average mass in a ball of radius r. This should be 
contrasted with a, which is concerned with the scaling behavior of the mass 
at individual points in the space. Because v is the more easily measured 
quantity (the prime reason for its introduction by Grassberger and 
Procaccia ~176 it has become a popular choice for "dimension" among 
experimentalists. However, it is important to note that there is no intrinsic 
relationship between v and the size (in terms of Hausdorff/packing dimen- 
sion) of the smallest sets capable of supporting ~.  The inequality tr/> v is 
immediate from (c) of Theorem2.2, but, as has been discussed by 
Ottetal. ,  ~43~ Beck, t3~ and Cutler, t~7~ it is possible to construct very 
plausible examples where v and tr are very far apart. There are smooth 
ergodic dynamical systems in IW v where the invariant measure ~ satisfies 
a = N while v is arbitrarily close to zero. (See Example 3.3 in this paper for 
a system of this form.) It has come to be recognized that correlation dimen- 
sion, and the R6nyi dimensions as a whole, provide information not about 
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the size of supporting sets, but about nonuniformity in the measure .~ 
across its support. If ~ has a bounded Radon-Nikodym derivative (i.e., 
density) with respect to the uniform measure across its support [so 
~(B) = Se g(x) dx, where Ig(x)[ ~< K-I, then we will observe a = m(q) for all 
q > 0. However, if ~ possesses singularities (as is the typical case), then the 
Rrnyi dimensions will differ from a and among themselves (to an extent 
which reflects the degree and nature of the singularities.) This connects 
with the multifractal theory mentioned earlier. 

We now turn our attention specifically to the invariant distributions 
associated with dynamical systems. Throughout the paper we consider the 
case where ~ '  is a compact subset of R u, m is a probability measure on the 
Borel sets of ,/r and 7": ,/r is a Borel-measurable mapping which 
preserves ,w (i.e., m = ,, ,T 1). We further assume that the system (./g, T, ,,~) 
is ergodic. Hence, under repeated iterations of T the time averages of 
bounded functions along the orbits of T converge, for ~,-almost all x, to 
the corresponding space averages. That is, 

l i m - 1 ~  .f(T-"(x)) = f .f(z)~(dz) ~,~,~-a.s. 
n * , ~ ,  t l j~_  I 

for all bounded measurable functions .[" .//g --, II~. 

Remark. In practice, initial conditions are very often selected 
according to the natural Lebesgue measure on a compact manifold .//4' and 
it is then observed or conjectured that the empirical measures 

1-~rrj(x,  
nj=l 

converge weakly to an ergodic measure ~ on an attractor. This scenario 
demands much more than simple ergodicity of ~ ,  since typically ~ is 
singular with respect to Lebesgue measure. Such measures ~ which attract 
orbits corresponding to almost all initial conditions (in the Lebesgue sense) 
are often called Bowen-Ruelle measures, and their existence has been 
proven rigorously in the case of Axiom A attractors) I~ We will assume, 
regardless of the manner in which initial conditions were selected, that the 
system has evolved through a sufficient number of iterations to be regarded 
as invariant and ergodic. Experimentally this may mean ignoring several 
hundred or several thousand initial iterates in order to allow transients 
time to die out. In situations where a physical phenomenon cannot be 
reproduced at will (such as in the case of climatological data), one cannot 
afford the luxury of ignoring observations; however, it is not unreasonable 
in many such cases to assume that the system has already been evolving for 
some time and has achieved a probabilistic equilibrium. 
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Cutler "SJ proved that if (r T, m) is an ergodic system where T is suf- 
ficiently smooth, then m is of exact Hausdorff dimension ~ for some ~ >i 0. 
The analogous result holds also for packing dimension. ~8) Sufficient 
smoothness is guaranteed if T is differentiable at m-almost all x, a condi- 
tion easily seen to be met by the maps considered in this paper. We do 
point out, however, that Ledrappier and Misiurewicz ~39) have shown that 
dimension regularity is not an automatic consequence of smoothness and 
ergodicity, so that we may observe mH=6~ and mr,= 6~, where ~ #ft .  
While Ledrappier and Misiurewicz ~39) as well as Young t62) have established 
certain sufficient conditions for dimension regularity in one- and two- 
dimensional maps, there does not yet appear to be a known general mini- 
mum criterion for dimension regularity. However, for most of the maps 
considered in this paper, equality of the pointwise Hausdorff and packing 
dimensions can be verified directly. In Section4 associated statistical 
properties are discussed and applied to the problem of estimating the 
common value a. 

Another property which we will often require for purposes of estima- 
tion is that of mixing. Recall that a system (~ ' ,  T, m) is said to be mixing 
if, for all Borel sets A _ ~ and B _  ~ ' ,  

lim r n T "(B))=re(A) re(B) (2.18) 

The mixing property allows us to treat observations sampled sufficiently 
far apart on a trajectory as possessing a certain degree of stochastic 
independence, so that a statistical analysis may be carried out. It may 
sometimes be necessary to assume a stronger form of mixing, such as the 
existence of a sequence of mixing co~:[ficients ~(n)J,O satisyfing 

sup I,~(A n 7" " ( B ) ) -  ~,,(A) -,(B)I ~<~(n) 
A,B 

(2.19) 

The mixing coefficients may also be required to approach 0 at a specified 
rate. We do not go into the details of the mixing properties of maps here, 
since Denker and Keller ~21~ have given a good discussion of this and the 
role of mixing in estimation. Most of the maps examined in this paper can 
be shown to exhibit some form of the mixing property. 

3. LEAST SQUARES ANALYSES OF THE CORRELATION 
D I M E N S I O N  

In the following we assume that W1 ..... IV, are n observations taken 
along some orbit of an ergodic dynamical system possessing good mixing 
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properties. The observations need not be successive; in fact, whether we 
choose to sample successively or at spaced intervals should depend on 
the degree of mixing believed to be present. Denker and Keller (2t) show 
that sufficient mixing is present in many dynamical systems to justify the 
sampling of successive observations (at least within the context of the 
present problem). We note that n is actually the effective sample size in this 
procedure. The true total sample size includes all discarded observations 
(which may be considerable in number). 

We assume that the correlation dimension 

v = lim log C(r) 
too ,  logr  

exists (with 0 < v < ~ ) ,  suggesting an asymptotic linear relationship 
between log r and log C(r). Let r = (rj ..... r,,) be a fixed vector of radii rj > 
r 2> . . .  >r,, ,>O. Let x~=iogr~ and define z ,= log( ' ( r , ) .  Note that 
.v~ ...... v,,, and z~ ..... z,,, are fixed (nonrandom) quantities, zl ..... zm are 
unknown and may be regarded as parameters whose values depend on the 
underlying distribution ~,~. C(r) is estimated from the data W~ ..... W, by the 
sample proportion C,,(r) of pairs of observations that are no more than 
the distance r apart. That is, 

C,,(r) = ~'.Y'.llllw, wkll~r~ (3.!) 
/ < k  

Set Yi= log C,(ri) and note that y~ is a point estimate of zi. The standard 
method for estimating v has been to plot y~ vs. x,. and take the slope b of 
the least squares line through the data pairs (xl,  y~) ..... (x,,, Ym) as the 
point estimate of v (assuming that the line shows a good fit to the data). 
Note that the only role of the sample size n of the original observations 
W~ ,..., W,, is in the quality of the estimate y~ of zi. 

We will discuss two distinct aspects of the problem of estimating v 
from the pairs ( x l , y ~ )  ..... (xm, y,,). The first concerns our ability to 
actually identify v in a linear model (this is the problem which we refer to 
as the wandering intercept). The second deals with the fact that the random 
variables y~ ..... y , ,  are statistically correlated and possess distinct variances 
c~ (in contrast to the simple linear regression model, which assumes 
uncorrelated observations with commonvar iance  c; we refer the reader to 
Myers. (4~)) Before proceeding to these discussions, we state a convergence 
result, based on the theory of U-statistics, proved by Denker and Keller. (~) 
This result is the main justification for the estimation techniques employed 
in this section, and may be considered a substitute for the usual assump- 
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tions that accompany a simple linear regression model. For the technical 
details concerning the smoothness and mixing assumptions in Theorem 3.1 
we refer the reader to Denker and Keller's paper. 

T h e o r e m  3.1 (Denker and Keller). Let (~/, T, ~ )  be a smooth 
ergodic dynamical system with good mixing properties. Let Wt ..... 14:, be a 
sequence of observations from an orbit of this system. Then: 

(a) For each fixed r > 0, C,(r)  and log C,(r)  converge with proba- 
bility 1 (wpl)  to C(r) and log C(r), respectively, as n ~ ~ .  

(b) For each vector C(r)=(C(r l ) , . . . ,  C(rm)) there exists a non- 
negative-definite m •  matrix U = (u,)) such that the sequence of nor- 
malized vectors nt/2(C,(r) - C(r)) --* N,,(0, U) in distribution as n ~ ~ ,  
where N,,,(0, U) denotes an m-dimensional Gaussian distribution with 
mean vector 0 and covariance matrix U. The analogous result holds 
for n i / 2 [ l o g C , ( r ) - l o g C ( r ) ]  with covariance matrix V, where vo= 
ui//C(ri) C(r/). First and second moments converge correspondingly. II 

3.1. The  W a n d e r i n g  In te rcept  

Consider first the ideal case where the actual parameter values 
C(r~),..., C(r,,)  are known (no need for data or estimation). Note that we 
can always write the identity 

log C(r ) = log (C(r )  \ r v j + v l o g r  

= ~(r) + v log r (3.2) 

where the intercept ~(r) depends on r. Corresponding to the vector r = 
(r~ ..... r,,,) we thus have the following system of m equations in the m + 1 
unknowns ~(rt) ..... ~(r,,,), and v: 

zl = ~(rl) + vxl 

: : : (3.3) 

z m = ~(r,,) + vx,, 

This reveals the basic problem of nonidentifiability of v in this model. The 
assumption that the limit 

v = lira log C(r) 
,~o~ logr  

exists does not guarantee convergence of the intercept ~z(r) to some 
constant ~ as r -*0 .  In fact, we will argue that in the generic case ~(r) 
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wanders or oscillates as r -~ 0, sometimes even diverging to _+ oo. It will be 
seen that in this situation the choice of vector r (and the way in which 
components of r are made to approach 0) plays a significant role. [This 
contrasts with an assumption often made for purposes of estimation; 
namely that, for small r, C(r) follows an exact power law, e.g., Takens. ~54)] 

Now consider the case where the parameter values z~ ..... z,,, are 
estimated from the data values y~ ..... y, , .  In view of (3.3) and Theorem 3.1, 
the corresponding statistical model is 

Yl = ~(rl)  + vx~ + e 1 

: : : : (3.4) 

y, ,  = ~(rm) + VXm + e,, 

where et ..... e,, are error random variables. Assuming n is sufficiently large, 
Theorem3.1 says that the vector n~/2(ej ..... e,,) has approximately an 
N,,,(0, V) distribution for some covariance matrix V. We will need to con- 
sider the nature of this covariance matrix later. At this stage the important 
point is that Yl ..... y , ,  are asymptotically (as n ~ ~ t  unbiased estimates of 
Z I , . . .~  Z m .  

Now consider m points (ul, wl) ..... (Urn, %,) in ~2 By minimizing the 
sum of squares of deviations Z i ~  ~ ( w i -  a -  bui) 2 over all possible choices 
of a and b, one obtains the least squares line w = a + bu, where b = S, , . /S ,~,  
a = �9 - bft, S . .  = Z'i~ j ( u ~ -  fi)z, and 

S , w =  ~ ( u , - ~ ) ( w , - ~ ) =  ~ ( u , - ~ ) w ~  
i = l  i = 1  

Here fi and # denote the arithmetic means of, respectively, the u values and 
w values. 

We will let v(r) denote the slope S~JS~x of the least squares line 
through the parameter pairs (x~, z~) ..... (xm, z,,,). Note that v(r) does not 
necessarily coincide with v except in the special case ~(r~) . . . . .  ~(r,,,)o 
The points (x~, zt) ..... (x,,,, z,,,) need not lie on a straight line, and even if 
they do, the slope v(r) of that line may differ from v. [In this last case we 
say that C(r) exhibits spurious scaling behavior at r.] We will let b(r) denote 
the slope SxSS~x  of the least squares line through the data pairs 
(X1, Yl) ..... (Xm, Ym)" Note that b(r) is a function of the original sample 
W~,..., W, (as are y~ ..... Ym), but for simplicity we suppress "n" in the 
notation. We obtain the following result. 

T h e o r e m  3.2. Assume that the hypotheses of Theorem3.1 are 
satisfied and the normalized error variables nm(e~ ..... em) asymptotically 
follow an N.,(O, V) distribution, V =  (v~). Then l i m . ~  b ( r )=v( r )  with 
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probability 1, l i m , _ ~  E(b(r))=v(r), and n~/2(b(r)-v(r)) asymptotically 
follows a Gaussian distribution with mean 0 and variance 

i = l  j = l  

Proof. Write 

m 
b(r) = Sxx I ~ (x~ - ~) y~ 

i = 1  

Since lim,_~ ~ y~ = z~ wpl, it follows that 

lim b(r)=Sxx I ~ (x~-~)zi=v(r) wpl 
rt -* ~J i = 1 

Convergence of the first moments occurs similarly. Now since the 
asymptotic distribution of nl/2(el ..... e,,) is N,,(O, V) and b(r) is a linear 
function of y~ ..... y,, (and hence of el ..... em), the rest of the theorem 
follows. I 

The above theorem shows that b(r) is a consistent estimator of v(r). 
This is only useful in the present problem if v(r) is close to v. One might 
hope that, in practice, a value of v(r) which is very different from v will 
result in a least squares line which fits the data poorly, thereby removing 
any temptation to treat v(r) as the correlation dimension. While certainly 
a poor fit will occur in some such cases, it is not uncommon to observe 
false scaling behavior over certain r vectors. This may pose a genuine 
difficulty when dealing with a real finite data set. It is less likely to be a 
problem in a laboratory situation where unlimited data can be gcnerated 
and many (and longer) r vectors plotted and compared [see (c) of 
Theorem 3.3]. 

Substituting c~(rj) + vxj for z~ in the expression for v(r), we see that 

v(r)=S~.~' ~, (x,-~)~(r,)+vSx= ~ ( x i - x ) x i  
i = I  i = 1  

= v + Sx. ~' ~ (x i -  x) ~(ri) 
i ~ l  

Consequently, the parameter error or systematic error corresponding to r is 

d(r) = v(r) - v = S.~-.~ I ~. (x~- $) ~(r~) (3.5) 
i = !  
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It is clear that the value d(r) generally depends on the choice of r and the 
behavior of the intercept function at the points r~ ..... r,,. The following 
theorem examines the way in which r should be chosen in order to force 
d(r) ~ O. 

Theorem 3.3. Assume 

v = lim log C(r) 
r~o, log r 

exists. Then: 

(a) lim,..o, [~(r ) / logr]=O.  This is the most that can be said in 
general concerning the convergence behavior of the intercept function (and 
is in fact equivalent to the hypothesis of the theorem). 

(b) Suppose there exists a finite constant ~ such that limr .~. ~(r) 
= ~. [In this case we say that C(r) exhibits true scaling behavior. J Let 
r= ( r~  ..... r,,,) be fixed and let 0 < s <  1. If we shrink the vector r 
by the geometric factor s, then the parameter error goes to 0. That is, 
lim~. . . . .  d(skr) =0.  This is generally (although not always) false if ~.(r) fails 
to converge. 

(c) Let t o > 0  and 0 < s < l .  For each m define the ruth vector 
r,,, = (s'"r o, s ''+ lr o ..... s 2m lro). Then lim . . . . .  d ( r m )  = 0. 

ProoL Part (a) is immediate from the definition of ~(r). To see (b), 
set x i = i o g r i  and Xk, ,=logskri .  Then Xk, i - - ~ k = X , - - 2  for each k and i, 
where "fk and 9~ are, respectively, the arithmetic means of Xk,~,..., Xk.m and 
xj ,..., Xm. Consequently, S~kx, = Sxx for each k, giving 

d(skr) = S~x I ~ ( x i - - x )  O~(skri) 
i = l  

From this it is clear that if ~ ( r ) ~  ~, then d ( s k r ) ~  0 as k ~ ~ .  To prove 
(c), note that, for Xm, j = J o g s  m i+.~ro and YCm=(l/m) ~i"= ~ xm, j, we have 

. . . . .  

j = l  j = t  

= ( l ~  m(m+ 121)(m--1)) 

Since ~(r)/log r --* 0, there exists t(rn) ~ 0 such that I~(r)l ~< ~(m) [log r] for 
all r in (0, s"ro]. Hence from the Cauchy-Schwarz inequality and (3.5) we 
obtain 
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)1,2 
Id(r,.)l ~ - ~  ~ 1 / 2  ~(s,.-l+Jro)2 

�9 ~ ~ X m X m  ~ x m x  m 

j l 

S -  1/2 ( ~' (~(rn) log S m - '  +/ro)2"] I/2 ~< 
X m X m  l..,.a 

~< e(m) S 1/2 (log s 2'~- lro)2 
- - x  m x m 

. I 

~< ~:(m) K[m(m + 1 )(m - 1 )] J/2 m3/2 

for some constant K which does not depend onto. Hence we see that 
d(r,~)---, 0 as m ~ oo. | 

In practice a limit to the applicability of the above asymptotic theory 
is of course the original effective sample size n. For small r the quality of 
the estimate C,(r) of C(r) is poor. (This will be discussed later in greater 
detail.) However, even when estimation is restricted to a certain r range, 
Theorem 3.3 can prove useful in detecting the presence of a wandering 
intercept. |n the following example we show that the uniform distribution 
across the Cantor set in [0, 1 ] gives rise to a wandering intercept. We then 
illustrate the way in which this behavior can be detected numerically. 

Example3.1. The C a n t o r  D i s t r i b u t i o n .  Let K denote the 
standard Cantor set in I'0, 1 ] constructed by removing middle thirds. Note 
that we may write K=0~,'=~ K,,, where K"=U~"__~ K,,,.i is the finite 
disjoint union of 2" intervals of length 3 "'. The Cantor distribution ,'~h is 
the unique probability measure on [0, 1] which assigns ,~,.(K,,,.i)= 2 " 
for each m and i. [A dynamical system corresponding to K and ~:h is given 
by the ternary shift map T(x)= 3x (mod 1), where initial conditions are 
selected randomly and uniformly from K. It is well known that the system 
(K, T, ,,nx) is ergodic with strong mixing properties.] Since ~ x  is uniform 
across K, we obtain v = a = log 2/log 3. (The value log 2/log 3 can easily be 
deduced from the approach of Hentschel and Procaccia, t37) utilizing the 
self-similarity properties of K.) 

To show that the intercept ~(r) of ~,~ wanders, we will exhibit two 
sequences u,,, ~ 0 and w,,, ~ 0 such that ~ (u" )=  0 for each m while 

( 5/2 ) 
~(wm) = log ~.51og-~-og 3 ~ -0.0992 

for each m. We take um= 3 " and w,,, = 5.3-m. NOW, since the intervals 
K,,.~ ..... K,,,,z, are separated by empty intervals of length at least 3 - " ,  it is 
easy to see that 

C(u,,,)= .~,,̂ . • ,,~^.({(x, y) l [ x - y l  ~<3 "}) = 2"2 -"2 -m=2-m 
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3 -= 3 -= 3 -= 3-t  3-2 3-2 3 -~ 

l ~  / H / H  / H / / /  - -  I 

Fig. 1. The Cantor set at level m = 2. The shaded interval on the left is I~. The shaded inter- 
val on the right is 12, 

Consequently,  

ct(u,,,) = log(C(u,,,)/u~,) = log(2 " /2  " )  = log 1 = 0 

A little more  work is required in the case of w,,,. Consider  first m = 2 and 
refer to Fig. I. The set {(x, y) l l x - y J  ~<5.3 2} is the disjoint union o f t h e  
set {(x, y l l l x - y l ~ < 3  t} with / l x 1 2 a n d  12 •  where /~  and 12 arc the 
two shaded intervals indicated in Fig. I. Note  in particular that 
3 2 + 3  ' + 3  2 = 5 . 3  2. Hence we obtain 

C ( 5 . 3  2) = C(3 ' )  + C(pairs  in Ii • 12 and 12 x / t )  

= 2  1 + 2 . (  2 2 .2  2 ) = 5 .  2 3 

Now consider m = 3  and refer to Fig. 2. The  set {(x, y)  l I x - . v l  ~<5.,~, ~ 
is the disjoint union of the sets {(x,y) l f x -y l<~3  2}, 11• I2x11, 
13 x I4, and 14 x / 3 ,  w h e r e / l  and / ' 2  are the shaded intervals of  length 3 -  3 
on the left side of Fig. 2 a n d / 3  and 14 are the shaded intervals of length 3 - 3 
on the right side of Fig. 2. We obtain  

C ( 5 . 3  -3)  = C(3 -2)  + C(pairs  in 1, x / ' 2 , /2  x I1, I3 X/4, [4 • I3) 

= 2 - 2 + 2 2 . ( 2 - 3 . 2 - 3 ) = 5 . 2  -4 

Carry ing  on in this manner ,  we obtain  the general result C(w,~)= 
5 - 2 - ~ "  + x). This shows that  the intercept function fails to converge, since 
if we calculate along the sequence {w,,}, we obtain 

Ct(Wm)=log(C(wm___~)~=log{ 5/2 ,) 
\ W~m / \5 '~176 

I--- LL LL __ m LL LL __.~ 

Fig. 2. The Cantor set at level m = 3. The shaded intervals on the left are 1~ and 12. The 
shaded intervals on the right are/3 and 14 . 
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The effect of the wandering intercept can be seen by considering 
the vectors rm=(U. ,_ l ,u , . )  and s , .=  (w,., um), m = 2 ,  3 ..... Since 
~(u,._l) =~(u,.), it follows from (3.5) that d(r,.) = 0  for each m. Hence r,. 
provides the correct value v(r,.) = v ~ 0.63093 for each m. However, since 

( 5/2 
~(w,.) = log \5i,,g 2/I,,g _ o~(u,, ,)  = 0 

s,. produces a constant parameter error 

( 5/2 
d(sm) = (log 5) -1 log ~ 51og-~og 3j ~ -0.06161. 

Hence we have v(s.,)= v + d(s,.)_~ 0.56932 for each m. This illustrates the 
remark made in (b) of Theorem 3.3 that the systematic error generally does 
not vanish when shrinking a vector by a geometric factor in the wandering 
intercept case. Numerically this can be observed by comparing the slopes 
h(r,,,) and b ( s . , )  of the straight lines through each of the pairs 
(log r,., log C.(rm) ) and (log s.,, log C.(sm)) for various values of m. In 
Table I we present the results of a numerical study for m = 4, 5, 6. We 
carried out five simulations, each producing a data set of n = 2000 (sequen- 
tial) observations from ~ c .  For each m, each data set was analyzed twice, 
first using r,. and then using Sin. 

Comparing the two columns in Table I, we see clear evidence of the 

Table I. The Effect of the Wandering Intercept: 
Slopes over Two Vectors rm and s., for the 

Uniform Distribution on the Cantor Set 
i l l l l l  

h(r,.) h(s.,) 

m ~  3 0.63121 0.56812 
0.63105 0.56704 
0.63199 0.56840 
0.63273 0.57479 
0.63133 0.57701 

m =  4 0.62452 0.55912 
0.63046 0.56887 
0.63148 0.57805 
0.62708 0.55751 
0.62587 0.55439 

rn= 5 0.62436 0.55750 
0.63019 0.56944 
0.63246 0.57845 
0.62486 0.55707 
0.62680 0.55418 



672 Cutler 

wandering intercept. Note that in order to determine conclusively that 
certain differences between vectors are due to actual systematic errors and 
not simply statistical error (due to sampling and estimation), it is usually 
necessary to have more than one data set so that repetition is possible. 
(For example, in Table I, five different data sets were used. It is clear that 
the variation within each column--the statistical error--is much less than 
the variation between columns, indicating a real parameter difference.) 
However, even in the absence of repetition (a situation very likely to be 
encountered in practice) the evaluation of the slope at different levels of 
two or more vectors can be informative. In Table I we see that following 
any one data set reveals a consistency in the slopes over the different levels 
of rm and s,, that suggests a systematic error. In practice we can look for 
such behavior and move to mitigate it by employing (c) of Thereto 3.3. 
This may require obtaining additional data so that estimates at smaller 
values of r can be obtained. Ideally over these longer vectors we would 
then observe convergence of the slopes toward a common value v. 

This indicates that the presence of a wandering intercept represents the 
generic case where dynamical systems are concerned. The justification for 
making such a claim is the current popular belief that most attractors 
are Cantorian at least in some direction. The analysis carried out in the 
preceding example indicates that inexact scaling behavior is probably a 
fundamental characteristic of distributions over Cantor-type sets. Note that 
the methods described above enable us to look for this feature, and subse- 
quently provide some information about the geometric structure of the 
system in addition to determining v. It is important to realize that while the 
exhibited parameter error is small in Example 3.1, we should expect to be 
able to observe exaggerated errors by modifying the geometry of the under- 
lying Cantor set (especially in higher dimensions) and considering non- 
uniform measures across the set. It is interesting to speculate whether the 
apparently poor scaling behavior of the Zaslavskii map (31) is due to failure 
of the correlation dimension to exist or to excessive oscillations in the 
intercept function. The work of Termonia and Alexandrowicz ~59~ suggests 
that the associated measure may not be exact-dimensional. 

We conclude this section with two examples. These examples illustrate 
the very different behavior that can arise even when the attracting set is not 
a fractal. They will be revisited in Section 4 when we consider the informa- 
tion dimension. 

Example 3.2. The Logistic Map. The logistic map T(x)= 
4 x ( 1 -  x) on [0, 1] is a standard example of an ergodic dynamical system 
possessing an invariant distribution ~ which is equivalent to Lebesgue 
measure. Hence the attractor of the system is [0, i] .  The probability 
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density function g(x) of ~ is given by g(x)= n-~[x(1 - x ) ] -  1/2. It can be 
shown that v = a = 1 here, but this example represents a borderline case 
for the correlation dimension in the sense that a density function with a 
sharper singularity at 0 would result in v < 1. (See Example 3.3.) This 
borderline aspect is reflected in the behavior of the intercept function, 
which actually diverges to ~ as r--+0. It can be seen that C ( r ) =  
O(r log 1/r) and hence c<(r)= O(log log l/r). The result is that the method 
of letting r--* 0 described in (c) of Theorem 3.3 produces a sequence v(rm) 
which converges very slowly to v = 1. The inexact scaling here has been 
discussed by Grassberger and Procaccia, t31) who suggest embedding the 
observations in higher-dimensional space; see Packard etal. (44) and 
Takens. (53) (This method is often used when attempting to estimate v for a 
higher-dimensional attractor based only on a single-variable time series; 
grouping of the data into vectors of length d and embedding into R d is 
carried out before least squares is performed. The manner of grouping the 
data and the statistical correlations between successive embeddings are of 
course additional sources of error variation which should be accounted for 
in a proper statistical analysis; however, we consider this topic to be out- 
side the scope of the present paper.) Grassberger and Procaccia state that 
in some cases this embedding procedure appears to reduce the systematic 
error. The difficulty in applying this or any other technique which works 
well only in certain situations lies in our general inability to identify (based 
only on data) those instances in which a particular method will perform 
best. We note that a recent paper of Ramsey and Yuan ~48~ examines some 
of the questions involved with embeddings and estimation of v in general. 

We present the results of a simulation study using a variant of 
Theorem 3.3(c) to illustrate the gradual convergence of v(r) toward 1 for 
the logistic map. We generated five data sets with 10,000 observations 
apiece, and analyzed each over the following four vector levels: 

rl = 0.09 (SIs2s3s4), r 2 = 0.09 ($2S3S4S5$ 6) 
r 3 = 0.09 (~'3S4S5S6S7S8)~ r 4 = 0.09 ($4S5S6,.~7S8S9S 10) 

where s = 1/3. Table II shows the mean intercept and mean slope (over the 

Table II. Slope and Intercept of the Least Squares Line for the 
Logistic Map  over Four Dif ferent  Vector  Levels 

Level 1 Level 2 Level 3 Level 4 

Intercept 0.402 0.53 t 0.663 0.822 
Slope 0.863 0.885 0.903 0.921 

i 
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five data sets) at each vector. Figure 3 shows the scatter plot and least 
squares line at each vector for one of the data sets. Note that excellent 
scaling behavior is observed at each level (which illustrates the danger in 
accepting a good fit based on a single vector). By considering the four 
vectors we observe the shifting slope and shifting intercept as r decreases. 
This demonstrates the usefulness of an iterative procedure to check the 
validity of conclusions. 

Example 3.3. Cutler tl7) examined the family of mappings {T~}, 
0 < ~ < 1/2, where 

Tr(x) = {2x 
(2x - 1 )l/~ 

0~<x< 1/2 

l/2 <<.x <~ 1 

Corresponding to Tr is a unique ergodic measure ~ which is equivalent to 
Lebesgue measure on [0, 1 ] (and hence tr = 1 ). The density function g(x) 

Fig. 3. 
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(a) 
Scatter plots and least squares lines for the logistic map over four different vector 

levels. 



Fractal Dimensions of Distributions o n  A t t r a c t o r s  6 7 5  

7 F r i ~ - -  

-9 -8 -7 -6 -5 

• 

(b) 

Fig. 3. (Condnued) 

of ~ satisfies the inequalities C x  ~ J < ~ g ( x ) < ~ K x  y- J for some finite 
positive constants C and K (which depend on ~,). It is shown that v = 27 
and that the intercept ~t(r) is bounded between two finite constants. For 
7 = 1/3 this gives v ~ 0.667, and we found this value to be more accessible 
numerically than its counterpart for the logistic map. As in Example 3.2, 
five data sets were analyzed at the vector r 4 and produced a mean slope of 
0.677. (It should be noted, however, that the individual slopes were quite 
variable, ranging between 0.621 and 0.701.) This seems to indicate that the 
presence of sharp singularities in the density does not in itself imply poor 
convergence; the crucial point is whether or not the singularity represents 
a boundary case where scaling behavior is very inexact. However, note that 
for small 7 we expect very slow mixing in this particular system [as iterates 
spend a great deal of time just doubling in the interval (0, e)-I and to obtain 
quality estimates it may become necessary to sample far apart on an orbit. 
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3.2. Estimating the Variability of b(r)  

The previous section dealt with the systematic error v ( r ) -  v. Here we 
consider the statistical behavior of the estimate b(r). Our main tools are 
Theorems3.1 and 3.2 of the previous section, which describe the 
asymptotic behavior of b(r). Letting c o. denote the covariance between Yl 
and Yi, for sufficiently large n (from Theorems 3.2 and 3.1 we expect 
co,~ v~/n) the variance 0 of b(r) is given by: 

o= 
i = 1  j = l  

i = l  j = l  

Below we derive the asymptotic covariance matrix U = (uo) of the nor- 
malized proportions n~/2C.(r) in the special case that the observations 
W 1 ..... IV. are independent. The matrix V then follows by Theorem 3A. 
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Theorem 1 of Denker and Keller ~2~ can be used to obtain U (and we will 
appeal to their result for the general case of correlated observations), but 
it is instructive to derive the matrix in a simple case. We see that the 
asymptotic covariance structure is determined by the variability of the 
distribution ~; from point to point across its support. Let W denote a 
random observation from ~ and define 

~(rl, r2)= Cov(cn(B(W, rl)), ~ ( B (  IV, r2))) 

= f ~ (B(w,  rl)) m(B(w,  r2)) ~ (dw)  - C(r,) C(r2) (3.7) 

Note that in the special case r I = r 2 = r the above reduces to the variance 
of the mass in a random ball of radius r: 

r(r, r) = Var(~(B(  IV, r))) 

= f ,;,(B(w, r)) 2 , ,~(dw)- Ctr) ~ (3.8) 
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We will prove the following: 
If WI ..... IV, are independent and identically-distributed observations 

from Ca,, the asymptotic covariance matrix U is given by uq=4z(r~, rj). 
Hence, the matrix V has entries given by vq = 4T(r~, ri)/C(r A C(ri). 

ProoL The asymptotic covariance u~j results from the fact that, in 
(3.1), pairs with a member in common are not independent. First consider 
the diagonal (variance) terms. We obtain 

= ~ ~ Var(Irllw, w, ll ~rl) 
j < k  

+ ~  ~ ~ C~ w, aJ-<,r|,lllIw, w~tl-'-,1) (3.9) 
i ~ . j  i ~ k  j # k  

Now the first term on the rhs of (3.9) equals (g) C(r)[l  - C ( r ) ] .  However, 
the second term on the rhs of (3.9) involves n(n - 1 )in - 2) terms which are 
determined by the variance of the mass in a random bali. Specifically, we 
calculate 

Cov(/tlln, w, li~rl,/rllW, w, ts~<r]) 

=E(Itltw, w, II~r]/[lIw, w, ii<~,l)-E(lrllw, w, ll<rl)E(IftIw, w, bl-rl} 
= Var(~(B( W, r))) 

= ~(r, r) (3.10) 

Hence 

( (~)  ) (n) C(r)[1-c(r)]+n(n-1)(n-2)~(r 'r)  Var C.(r) = 2 

and therefore 
4(n - 2) Var(nl/2C,(r)) = 2C(r)[ 1 - C(r)] -i- - -  r(r, r) (3. ! 1 ) 

n - 1  n - I  

This shows that u,.; = 4r(r~, r~). The proof for u o is analogous. The form of 
v o follows by considering the first few terms in a Taylor expansion of 
log C,(r). i 

tn the usual case that Wj ,..., IV, are correlated observations from 
some orbit of a dynamical system (with sufficiently good mixing proper- 
ties), Theorem 1 of Denker and Keller (applied to covariances) gives 

uij= 4r(r,, r j ) + 4  ~ x(h, r i, rj) (3.12) 
h = l  
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where 
~c(h, rl, r2)= Cov(~(B(Wl, rl)), ~(B(W~ +h, r2))) 

accounts for the correlations between observations that are h iterations 
apart. In the presence of good mixing it  is probably not necessary to 
estimate x(h, r~, r2) for more than a few values of h. 

To obtain estimates for these quantities, first compute 

p(j, r ) = ~  ~ Ir,,w ' wj,, <~r] 
a~j 

for each point W/ in the data set and each component r of the vector r. 
Since C,(r )= (1/n)Z]=~ P(L r), the computations can be built into the 
algorithm for obtaining C,(r); this requires double the time of the shortest 
algorithm (which only counts distinct pairs), but does represent the total 
necessary increase in computing time required to also estimate the 
covariance matrix. 

The estimators of T(rl, r2) and x(h, rl, r2) are given by 

f(ri, r2) = 1  ~ p(j, r,) p(j, r 2 ) -  C,(r,) C,(r2) 
nj=l  

I . la 
- -  ~ p(j, r l ) p ( j + h ,  r2 ) -C , ( r , )C , , ( r , )  (3.13) ~(h, r t, r 2 ) = n _  h i~: i 

We applied the above technique to estimate the variability of h(r) for 
the Kaplan-Yorke map at the vector r = (0.08 0.04 0.02 0.01 0.005) with 
n = 750. The Kaplan Yorke map in R z with parameter 2 = 0.2 is given by 

T(x, y ) =  (2x(mod 1), (0.2)y + cos(4rtx)) (3.14) 

The purpose of choosing this example with these parameters and sample 
sizes was to compare our results to those of Denker and Keller. The details 
of the estimation procedure in that paper are rather sketchy, but it appears 
they were attempting to estimate [Var b(r)] ~/2, by estimating (3.12) with 
four eovariances h = 1, 2, 3, 4. Their numerical procedure either contained 
an error or they failed to double the values in their table, since the presen- 
ted results are considerably out of line with the actual variance (knowledge 
about the latter being provided by the empirical variance of many 
estimates). To obtain a good estimate of the true variability of b(r), we first 
carried out 50 independent simulations (each with sample size n = 750) and 
computed the empirical standard deviation 

~1 50 ) I/2 
s=t~-~ ~,  [b,(r)-/~(r)]21 ~0.0412 
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of the individual slopes b~(r) ..... bso(r) from their arithmetic mean/J(r). This 
value compares favorably with the empirical standard deviation (~0.035) 
of the 20 slopes provided by Denker and Keller, but is twice the size of 
their estimates of the standard deviation. We then ran three independent 
simulations and obtained estimates of (3.12) [using (3.13)] first ignoring 
all covariance terms x(h, ri, (j) and then including the first four terms h = 1, 
2, 3, 4. Our estimates of the standard deviation of /,(r) [obtained by 
estimating V from (3.13) and then substituting into the second line of 
(3.6)] are given below (the first component in each pair corresponds to the 
estimate with no covariances included): 

(0.0380, 0.0434) (0.0359, 0.0396) (0.0404, 0.0496) 

This appears to be an extremely effective as well as simple procedure for 
obtaining accurate standard errors, and it is to be hoped that this techni- 
que would be applied routinely when estimating the correlation dimension 
from least squares. 

We close this section with some general remarks on estimation. It is 
clear from Section 3.1 that we should only be estimating v at small values 
of r. However, we can expect greater variability and poorer estimates when 
r is smaller. The relative rates at which r ---} 0 and n ---, ~ become important 
here (and the optimal rates are likely to depend on the true underlying 
dimension and certain specific scaling properties of~).  Various authors 
have considered the problem of determining the amount of data necessary 
in order to make valid inferences about dimension. Nicolis and Nicolis/42} 
Grassberger, ~29} Essex etal., ~26~ and Essex {251 is a particularly interesting 
sequence of papers which, in part, deal with this question. An important 
conclusion to emerge from these papers is that most "real" data sets are not 
nearly large enough to provide good inference about dimension~ However, 
we point out that the efforts toward determining the sample size necessary 
to observe a "scaling region" in r (see in particular Essex etal. ~26~ and 
Essex r may only really be applicable to measures which scale on levels 
very much like D-dimensional Lebesgue measure, since this is the distribu- 
tion for which computations were carried out. (Since Lebesgue measure 
"scales" well at all reasonable values of r, the problem of sample size here 
reduces to guaranteeing the existence of some r range over which the data 
set is neither saturated nor depleted.) In fact, the typical search for a 
scaling region in r often implicitly ignores the asymptotic (r ~ 0) nature 
of v; larger values of r frequently are eliminated only when "saturation" or 
"turning" is observed. For distributions which scale correctly only for small 
values of r the sample sizes necessary to make valid inferences may be even 
greater than the (already large) estimates provided by Essex. ~25~ We also 
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note that the "boundary corrections" proposed by Essex e t a L  (26) (to 
increase the range of the scaling region) should be employed with great 
caution; since v is the scaling exponent of an average ball, computation of 
v does in fact require us to average over all points, including boundary 
points. When we focus on the scaling behavior of individual points in the 
data set we are really looking at tr. Thus, making too many boundary 
corrections may result in a statistic which is estimating neither v nor tr, but 
something in between. 

See also Ramsey and Yuan t48) for a discussion of estimation problems 
and sample size. 

4. ESTIMATING THE INFORMATION DIMENSION 

Throughout this section we will assume that 

lim log ~ ( B ( x ,  r ) )  _ a 

r ,  o log r 
~ - a . s .  

Under this assumption the least squares techniques discussed in the 
preceding section can also be employed here with ~,,(B(x, r)) in the rote of 
C(r)  fprovided x is a generic point on the attractor). That is, we consider 
the identity 

log ~.( B( x,  r ) ) = ~( x, r) + a log r (4.1) 

The sample proportion 

n! 

I E llllW~ p , ( r )  n 
/ i 

~lf<rl 

provides a point estimate of r r)). The difficulties with least squares 
estimation noted in Section 3 will of course also occur here, and in fact we 
can expect even greater unpredictability in the intercept behavior because 
of local effects at the point x. 

Cutler and Dawson ug'z~ studied the dimension-related properties of 
data from a large class of distributions. While the results in the second 
paper are formulated in terms of distributions on the unit interval, it is 
clear how to extend them to a more general setting in higher dimensions. 
We provide the basic constructions now. 

Let ./r be a cube in Ru; without loss of generality we can take ~ / t o  
be the unit cube. Let r>~2 be a fixed positive integer, and let p =  
(PJ, P2 ..... p,N) be a vector of probabilities, where Z ~  1 P i=  1. We allow 
the possibility p j - -0  for some j, but at least two should be nonzero to 
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avoid trivial constructions. Now, for each n t> 1, Jr  can be split uniquely 
into r "N nonoverlapping cubes of side length r -". At the first stage (n = 1 ) 
label the r N cubes as cl ..... CrN (maintaining this pattern of labeling at 
further stages, so that the correspondence between the second-stage sub- 
cubes of cj and the labels cj.l, Ci.2,..., ci.,N is fixed and determined by the 
first-stage pattern). To the nth-stage subcube ch..-J, we assign the probabil- 
ity ~ . (C j l .  j , )  = Pi, PJ2"" Pw Thus, the stages are taken to be independent. 
(More general probability structures are possible, but for simplicity we 
will consider only the independent model here.) The measure m , ,  having 
been defined over r-adic cubes, now extends uniquely to a probability 
measure on ,# .  Letting g be any nonnegative function such that 
S.a g(x) , ,%(dx)= I, we now define ~ by ~(B)=. [ t j  g(x)cn,(dx).  In this 
context g = d,,~/dm, is the density (or Radon-Nikodym derivative) of ,,-, 
with respect to the canonical measure m , .  

The measure ~,~ falls into one of three categories, which we call smooth, 
sem(fractal, and fractal. The measure ~ is smooth if pj = r N for each j (so 
,, , ,  coincides with Lebesgue measure on ~ ) .  Hence, smooth measures are 
those which have a density with respect to Lebesgue measure. (See Exam- 
ples 4.1, 4.2, and 4.6 in this paper.) A more general definition of smooth is 
possible by considering measures which have densities over smooth 
manifolds (this approach is taken in Cutler and Dawson, ~19) where such 
measures are called "D-regular"). Semifractal measures (so-called because 
they have properties in common with both smooth and fractal measures) 
occur when at least one Pi = 0 and all nonzero Pi take on a common value. 
(That is, each nonzero probability pj = l/k, where k, 2 ~< k ~< r N -  1, is the 
total number of nonzero Pi-) As a result, , a ,  is the uniform measure on a 
Cantor set (where the Cantor set is obtained by eliminating all empty, i.e., 
zero-probability, subcubes from J / ) ,  and ~ has a density with respect to 
this uniform measure. (See Examples4.3 and 4.8.) Finally, the fractal 
measures occur when there are at least two nonzero pp. which are not equal. 
The dosed support of a fractal measure may be ~ '  (if each pj > 0) or a 
Cantor subset of dr' (if at least one pj = 0). However, a fractal measure 
is always singular with respect to the uniform measure on its closed 
support, and this distinguishes the fractal case from the first two. (See 
Examples 4.4, 4.5, and 4.9.) 

The intercept ~(x , r )=log[~(B(x , r ) ) / r  ~ exhibits three distinct 
behaviors (as r--* 0), depending on whether ~ is smooth, semifractal, or 
fractal. Let g denote the density function d,,n/d~, defined above. In the 
smooth case, o~(x,r) converges to log[Kog(x)]; Ko is a normalizing 
constant which depends only on a. (In our simple cube construction in R u, 
we always have a = N in the smooth case.) In the semifractal case, ~(x, r) 
asymptotically oscillates between two fixed bounds a l + l o g g ( x )  and 
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a2+log  g(x), where a~ and a 2 are determined by the geometry of the 
supporting Cantor set. The fractal case exhibits the worst behavior; for 
m-almost all points x, we observe that 

lim inf ,t(x, r) = -oo  and lim sup a(x, r) = + oo 
r - * O  r ~ O  

Some order is restored in this last case by the fact that when averaging 
over random points X selected from ~ we can show that ~(X, r)/(log I/r) 1/2 
tends to a mean-zero Gaussian distribution as r--+0. Hence ]~(X, r)l = 
o((log l/r)1/2 + ~). 

Guckenheimer t34~ suggested sorting the distances d /=  [] W / - x ] t  into 
ascending order, then plotting the logarithms of the ordered distances 
against the fixed values log(j/n),  j =  1, 2 ..... n. (In this approach the radii 
become random and the observed proportions fixed, which is the reverse of 
the earlier procedure.) The appealing feature of this method is that it is not 
necessary to select a vector r and the radii at the lower end of the scale 
automatically decrease toward 0 as n --* oo. However, we would need a rule 
for removing observations at the upper end of the scale (large radii), and 
the covariance structure of the logarithms of the ordered distances would 
also have to be determined (as in Section 3.2) in order to be able to 
estimate the variability of the slope of the least squares line. It is also 
important to note that reversing the role of the radii and the proportions 
means that the slope of the least squares line is inverted, leading naturally 
to an estimate of 1/o- rather than tr. Taking the reciprocal to obtain a point 
estimate of cs does not always produce satisfactory results, and so it is par- 
ticularly important here to have a good sense of the error bounds on 
estimates. Termonia and Alexandrowicz ~59~ seem to have suggested a some- 
what similar procedure; furthermore, they average over several points x to 
reduce the influence of local effects. However, since this averaging is per- 
formed prior to scaling (i.e., before taking logarithms), we would expect 
their procedure to perform poorly in the case of measures with densities 
with sharp singularities (perhaps leading to estimates of v rather than a.) 

Our approach to estimating the information dimension will be that of 
using a nearest neighbor statistic (the extreme low end of the scale in 
Guckenheimer's method) to construct confidence intervals for ~. An inter- 
val [e~, eu] is called a 95 % confidence interval for tr if the statistical proce- 
dure used to construct [c~, cu] produces intervals which, in the long run, 
cover tr 95 times out of 100. Our emphasis is on intervals rather than point 
estimates for three reasons. First, a central problem in dimension estima- 
tion has been the difficulty in obtaining accurate error bounds; this 
problem is directly addressed by confidence intervals. Second, it is likely 
that in most situations accurate intervals for dimension will be all that is 

822/62/3-4-12 
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really needed. Finally, the point estimate produced by our method is not 
particularly well behaved (being a reciprocal), so in using this procedure it 
is best to regard the point estimate with skepticism and look instead to the 
confidence interval. This will be discussed again later. 

The result which forms the basis for our procedure is the following: If 
WI, W2 .... is a sequence of independent observations from m and d,(x)= 
minl<~j~. IIWj-xll, then, provided the dimension regularity condition 
trH(X ) = ap(X)= tr holds for ,,,~-almost all x, we have 

iim log d,(x) _ 1 with probability I ~.-a.s. 
, ~  log l /n tr 

The convergence of this sequence, however, is usually very slow, with the 
local density g(x) at x playing a significant role. This is not surprising, 
since the distribution of points near x is affected by the density value at x. 
A high (low) value of g(x) can make the local dimension at x appear lower 
(higher) than it really is, particularly in smaller samples. Define the linear 
transformation L,,(x) by 

('log doIx) 
L,(x)=alognk ~og~_ ~ ! )  (4.2) 

Cutler and Dawson ~19) show that if -,~ is a smooth measure, then for 
m-almost all x, the distribution of L,(x) converges, as n--, w_,, to an 
extreme value distribution (see Appendix C for details) with mean 
y +log[K,g(x)] (where 7 =  Euler's constant ~0.577). Thus, the center 
of the limiting distribution is determined by g(x). Note also that this 
result illustrates the poor convergence behavior of the difference 

log d,(x) 1 

log i/n tr 

Inflation by log n is sufficient to produce a nondegenerate error distribu- 
tion. Furthermore, this turns out to be the best possible scenario; in the 
case of fractal measures the behavior of L.(x) is so erratic that its distribu- 
tion does not converge as n ~ ~ .  Averaging over points x in the space as 
well as damping by the quantity (log n) ~/2 must be carried out to obtain a 
limiting distribution. The quantity Ln(X)/(log n) ~/2 approaches a mean-zero 
Gaussian distribution as n ~ .  (See Appendix C for more details.) 
Although the density function g does not appear explicitly in the 
asymptotic distribution in the fractal case, this is due to the (log n) ~/2 
divisor, which slowly drives the mean toward zero. The rate of convergence 
to the mean-zero Gaussian will be affected by the nature of g. 
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One way of eliminating the local density effect at x is to obtain two 
independent random samples W1,1 ..... W~,. and Wz, I ..... W2,.,., one of 
size n and the other of size mn (where m 1> 2 is some fixed real number). 
Compute the respective nearest-neighbor distances 

dl.,,(x) = min II W , , j -  xll and d:,,,,,,(x) = min 1[ W2, j -  xl[ 
1 <~j<<.n 1 < ~ j ~ m n  

and define the log-ratio statistic 

1 , /" d , , , (x) '~  
R.( X ) = l~g m '~ k ~ )  ) (4.3) 

It can be shown (see Appendix C) that R,,(x) is asymptotically free of the 
local density effect. We now present a procedure, based on this statistic, 
which can be applied to smooth, semifractal, and fractal measures. The 
exact range of measures for which this method is valid is not known, but 
the asymptotic theory can be proven rigorously in certain cases and 
validated numerically in many others. We will present the basic result 
and procedure first, then discuss the general method of proof. Rigorous 
details can be found in Appendices B and C. 

Let Sl. ~={Wj,~,..., W~,n} and Sz .... ={W2.1 ..... W2 ...... } denote two 
independent random samples from ~.  (Of course in practice the observa- 
tions will not be independent, and here our mixing assumptions become 
important, The practical details of how to sample will be discussed later.) 
Let S.=Sj , .wS2, . . .  and then select, independently of S,,, a random 
sample B =  {Xj ..... Xk.} from ~.. We refer to B as the set ofbasepoints, and 
use the notation Xj to distinguish the basepoints from the data points Wj 
(although all are observations from ~).  The number ks of basepoints will 
generally be much smaller than n, and determining the correct ratio of k.  
to n is still an open problem, although we can offer some practical 
guidelines. For each basepoint compute the ratio statistic R . ( ~ )  defined in 
(4.3), the empirical mean R.=(1/k . )~"=jR. (Xj ) ,  and the empirical 
standard deviation 

I *" _ _ ~ . ] 2 }  j/2 
. = { ~ j = ~  [R.(Xj) 

Let O(S.) denote the conditional variance of R~(Xj) given the combined 
sample S..  That is, O(S~)=E((R.(Xj)-#(S.))21S.) ,  where /~(S.)= 
E(R.(Xj) I S.) is the conditional mean of R.(Xj) given S..  (It follows then 
that s is a point estimate of [0(5'.)] M/2.) We propose the following: 
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T h e o r e m  4.1. Let 

z .  k. = R . ( X j )  - 

�9 [ k . O ( S . ) ] , / 2  

Then, provided n ~ oo, k. ~ oo, and k. /n-* 0 at a suitable rate, the dis- 
tribution of Z,,,k. approaches a standard Gaussian distribution with mean 
zero and variance 1. An approximate 95 % confidence interval for tr is given 
by [el, c,,], where ct = (,~. + 2s/x/~,,) i and c. = (/~,, - 2s/.4/~.) t and s is 
the empirical standard deviation of the R.(Xj). 

Several ideal lie behind the above central limit theorem. The three key 
ideas are the following: 

!. For large n, the variables R,,(Xj ) center around the value 1/a. This 
centering should occur fairly quickly, as the bias due to a density effect has 
been removed. The variance of R,,(Xi) (as a function of n) stays bounded 
for smooth and semifractal measures, actually converging in the smooth 
case to the asymptotic value O(a, m) = n2/[3(iog m) 2 tr2]. It is instructive to 
compare this value with the empirical variation obtained in the smooth 
Examples 4.1, 4.2, and 4.6. For fraetal measures the variance grows at a 
rate proportional to logn, the constant of proportionality being larger 
when J~ is "more fractai." However, the growth in variability is sufficiently 
controlled that central limit theory is still applicable. See Appendix C. 

2. For large n and k.  with k,,/n in the appropriate ratio, the condi- 
tional variance O(S.) gives a good approximation to the true variability of 
the numerator (this is important because the conditional variance is the 
quantity naturally estimated from the data.) This is a consequence of 
Theorems B.1 and B.2 in Appendix B. 

3. The variables R.(Xj), n= 1, 2,..., j =  1 ..... k. ,  form an array in 
which each row R.(X1) ..... R.(Xk.) can be embedded in an infinite 
exchangeable sequence. (A sequence of random variables is called 
exchangeable if any permutation of any k of them has the same joint 
distribution as the first k variables.) This embedding results by considering 
an infinite sequence of random basepoints X1, X2,... and regarding 
R.(X~) ..... R.(Xk.) as the first k. terms of the corresponding infinite 
sequence R.(XI), R.(X2) ..... Exchangeability is a 'property related to but 
weaker than i.i.d. (independent and identicaUy-distributed). The variables 
R.(X1) ..... R.(Xk.) fail to be independent because each is a function of the 
same sample S.. However, as we move down the array, the sample size n 
increases and we expect the nearest-neighbor distance to one basepoint to 
become independent of the nearest-neighbor distance to any other 
basepoint. Bickel and Breiman iS) have developed some related limit 
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theorems involving functions of nearest neighbors; however, they use the 
observations simultaneously as basepoints (which destroys the ability to 
embed into an infinite exchangeable sequence) and their method of 
normalization does not allow covariances to vanish quickly enough. 
Techniques for proving limit theorems for infinite-exchangeable arrays are 
known, and in Appendix B we use a generalization of a method suggested 
by problems in Chow and Teicher (ref. 12, #3,  4, p. 317). 

Assuming that Z,,k, is approximately Gaussian with mean 0 and 
variance 1, we conclude that there is a 95 % probability of Z,,k, falling 
between + 2. This translates into a 95 % probability of the random interval 
R.,+_2[O(S.) /k .]  ~/2 covering 1/a. Inverting this, we obtain a confidence 
interval for a: 

[ ' , ] 
R.  + 2[O(S . ) / k . ]  ,/2 ' ~ .  _ 2[0 (S . ) / k . ] ' / 2  

At this stage the unknown quantity [O(S,,)] ~/~ is replaced by its estimate 
s, the empirical standard deviation. This results in the approximate 95 % 
confidence interval [c/, c,]  presented in Theorem 4.1. 

The empirical mean /~,, will be approximately distributcd as a 
Gaussian for large n, and provides a point estimate of I/tr. The reciprocal 
# = 1//~ n can be used as a point estimate of a; however, as the reciprocal 
of a Gaussian, # has no moments. Numerically this is observed as wild 
swings in the value of d from simulation to simulation. For this reason 
point estimation of a is not particularly good with this method. We also 
note for the interval [c~, c~] proposed in Theorem 4.1 that the increase in 
coverage probability toward 95 0/0 grows very slowly as a function of n. We 
found that a much more efficient way to achieve 95% coverage was to 
widen the confidence interval; for example, replacing "2" by "3" in the 
definition of [ct, c,-I generally produced 95 % or better coverage often with 
half the sample size required by the first method. This is an important 
consideration when running short on data. The price is slightly wider 
confidence intervals. 

We now present a series of examples with tables illustrating the above 
technique. There are three sample size quantities involved; k = number of 
basepoints, n = size of first sample, and m = multiplicative factor deter- 
mining the size of the second sample. The total effective sample size (not 
including discarded iterates) is t = k + n + m n .  In each case 20 typical 
confidence intervals with corresponding point estimates # (obtained from 
repeated independent simulations) are provided, including one interval 
which fails to cover tr (marked with an asterisk .). The ratio ! in 20 reflects 
the approximate probability of failing to cover. Observed coverage 
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probabilities ibased on 50 simulations unless otherwise indicated) are given 
in the tables. The purpose is to provide the reader with a feeling for the 
behavior of the intervals and point estimates produced by this method. The 
table columns marked s, Rmin,  and Rmax, provide, respectively, the empiri- 
cal standard deviation s, the observed minimum, and the observed maxi- 
mum, of the R,(Xi). The purpose is to contrast the behavior of the R,,(Xj ) 
in the smooth and nonsmooth cases. In fact it is often possible to 
distinguish fractal measures from smooth measures simply by observing s, 
rmin, and rmax. This will be indicated at the appropriate places. 

The following five examples are of dynamical systems on the unit 
interval. In order to facilitate comparison among these examples, the same 
sample size controls k = 300, n = 500, and m = 5.0 were used in each case. 
This produced a total effective sample size of t=  3300, which is quite 
modest by comparison with the sample sizes often used with other 
methods. To obtain shorter confidence intervals, k and n should be 
increased with k/n--,O. Certain numbers of iterates often must be dis- 
carded. We found that the crucial assumptions to be satisfied were inde- 
pendence of the two samples and independence among the basepoints. 

Table III. Example 4.1" 

[c/, c.] s Rm,. Rm~, 

1.008 
1.052 
1.001 
0,976 
0.985 
0.952 
1.105 
1.021 
0.935 
0.932 
0.872 
0.%9 
1.114 
1.091 
1.063 
0.956 
1.071 
0.928 
1.052 
0.977 

i i l l l l  

a a =  1, k =  

[0.887, 1.166] 1.167 - 2.212 4.119 
[0.930, 1.211 ] 1.081 - 4.340 3.974 
[0.893, !.140] 1.052 -2.938 4.947 
[0.858, 1.131 ] 1.218 -3 .543 5.607 
[0.862, !.148] 1.252 -4.128 6.978 
[0.855, 1.074] 1.035 -2 .837 4.967 
[0.970, 1.284] 1.094 -4 .082 3.933 
[0.898, 1.183] 1.162 -2 .523 6.129 
[0.834, 1.063] I.! 17 -3 .056 4.484 
[0.832, 1.060] 1.119 -3 .264 4.992 
[0.783, 0.984]* 1.129 - 1.450 5.280 
I-0.863, 1.107] 1.109 -2 .320  5.424 
[0.979, 1.292] 1.073 -2 .400  4.446 
[0.955, 1.273 ] 1.132 - 3.482 6.011 
[0.928, 1.244] 1.186 -2 .856 5.071 
[0.849, 1.093] 1.138 -5 ;917 4.223 
10.937, 1.251 ] 1.162 -4.671 4.388 
[0.829, 1.053] I.I 10 -2 .319 5.056 
[0.923, 1.221 ] 1.144 -3.131 5.240 
[0.871, 1.112] 1.076 - 1.72I 4.908 

i ii i 

300, n = 500, m = 5.0, t = 3300, observed coverage ~ 9 4 % .  
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(This is generally achieved in the presence of mixing, for example, by 
separating basepoints by many iterates. The intermediate iterates are dis- 
carded.) Independence of the observations within each sample was found to 
be less critical; except in cases where mixing was very slow, we were able 
to select successive observations when constructing a sample. 

Example 4.1. The Logistic Map. Here we consider T(x)= 
4x(l - x) as in Example 3.2. Refer to Table Ill. Simulations were performed 
by generating an initial condition at random from [0, 1] and then iterating 
under T. The first 100 iterates were discarded. The jth and ( j + l ) t h  
basepoints were separated by 3j iterates. (However, a fixed separation of 
10-15 iterates probably would have been sufficient.) The two samples were 
separated by 50 iterates. Observations within each of the two samples were 
selected successively. Compare the observed values of s with the asymptotic 
value [0(1, 5)] ~/2~ 1.127 for smooth measures with tr = 1 and m = 5. 

Example  4.2. Here T(x) is the map discussed in Example 3.3 with 
y =  1/3. As in the previous example, an initial condition was selected 
randomly from [-0, I], the first 100 iterates discarded, and the basepoints 

Table IV. Example 4.2 = 

# I t .  c.J s R ..... R ...... 

0.981 [0.876, I.I 13] 1.049 - 1.592 4.148 
1.263 [ 1.085, 1.512 J* I. 128 - 2.996 4.347 
0.972 [0.867, 1.104] 1.072 -3.357 4.096 
1.029 [ 0.907, I. 190 ] 1.136 - 3.178 4.250 
0.966 [0.854, 1.086 ] 1.172 - 3.171 4.124 
0.944 [0.836, 1.086] 1.195 -2.691 5.239 
1.062 [0.924, 1.200] 1.135 - 2.039 4.548 
1.083 [0.956, 1.249] 1.065 - 3.941 4.403 
I. 110 [0.979, 1.280] 1.040 - 3.888 3.538 
1.043 [0.918, 1.207] 1.132 -3.757 3.956 
0.925 [0.828, 1.049] 1.105 - 1.854 4.441 
0.925 [0.827, 1.049] 1.110 - 2.611 4.378 
1.112 [0.978, 1.289] 1.068 - 3.290 4.452 
0.943 [0.836, 1.081 ] I. 171 - 2.543 6.295 
1.054 [0.927, 1.222] 1.129 -2.545 4.408 
0.951 [0.842, 1.093] 1.180 -2.847 5.458 
1.092 [0.962, 1.262] 1.071 -2.561 3.613 
0.974 [0.867, 1.111 ] 1.094 -2.994 5.028 
1.044 [0.915, 1.215] 1.167 -3.616 6.439 
1.024 [0.902, 1.286] 1.147 -2.774 4.624 

~tr= 1, k=300 ,  n =500, m = 5.0, t = 3300, observed coverage ~95%.  
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sampled  3j i terates apa r t  (in this example  such separa t ion  is p robab ly  
necessary because of slow mixing). We  found that  using successive observa-  
t ions in the samples  p roduced  poo r  coverage probabi l i t ies  ( approx ima te ly  
84% instead of the in tended 95 %).  This p rob lem was rectified by dis- 
carding j i terates between the ( j -  l ) th  and j t h  observa t ions  to improve  

the mixing. Refer to Table  IV. Again  compare  the observed values of  s 
with 1.127. 

E x a m p l e  4.3. The  C a n t o r  D i s t r i b u t i o n .  This corresponds to 
Example  3.1 and the uniform dis t r ibut ion  ~ on the Can to r  set= This is a 

semifractal  measure.  The asympto t ic  behavior  of nearest  ne ighbors  for 
semifractai  measures  has more  in c o m m o n  with smooth  measures  than 
fractal measures.  In par t icular ,  O(S,,) stays bounded  as n ~  Go. Note,  
however,  the increase in the observed values of s as compared  to the two 
preceding examples.  (See Table  V.) Successive observat ions  were used 
within each sample;  basepoints  were sampled 50 i terates apar t .  I tera t ion 
was performed by shifting a b inary  str ing of 50 O's and 2's once to the left 
and randomly  generat ing a new 0 or  2 (with equal p robab i l i ty )  into the 

Table V. Example 4.3" 

[c~, c,,] s R .... Rm~,, 

0.580 [0.516, 0.661 ] 1.838 - 2.763 7.619 
0.765 [0.666, 0.900 ] * 1.691 - 5.930 8.39 I 
0.585 [0.519, 0.670 ] 1.885 - 4.609 7.50! 
0.673 [0.599, 0.768 ] 1.597 - 5.407 5.969 
0.587 [0.521, 0.673] 1.881 -4.663 8.121 
0.598 [0.538, 0.673 ] 1.622 - 2.769 6.877 
0.626 [0.55 I, 0.723 ] 1.872 - 4.857 9.227 
0.679 [0.594, 0.792 ] 1.820 - 4.479 7.648 
0.702 [0.617, 0.815] 1.712 -5.520 6.111 
0.719 [0.6t6, 0.863] 2.014 -7.506 9.609 
0.616 [0.547, 0.705] 1.771 -4.065 8.043 
0.656 [0.574, 0.767] 1.900 - 3.405 7.894 
0.610 [0.545, 0.692] 1.691 - 3.989 6.556 
0.598 [0.530, 0.687] 1.872 -7.812 10.176 
0.576 [0.517, 0.650] 1.719 -3.423 6.537 
0.647 [0.570, 0.748 ] 1.813 - 3.345 6.839 
0.617 [0.550, 0.704] 1.721 - 3.066 7.576 
0.657 [0.578, 0.760] 1.791 - 3.877 7.115 
0.644 [0.565, 0.749 ] 1.884 - 4.163 7.645 
0.580 [0.516, 0.662] 1.847 - 3.334 11.825 

~a = 0.6309, k = 300, n = 500, m = 5.0, t = 3300, observed coverage ~94 %. 
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50th pos i t ion .  (The  s t r ing  of  O's a n d  2's is in te rpre ted  as the t e rna ry  expan-  

s ion of  the c o r r e s p o n d i n g  po in t  x.) 

Example  4.4. A Fracta l  C a n t o r  D is t r ibu t ion .  We cons ider  
the t e rna ry  m a p  T(x)= 3x ( m o d  l )  as in  the preceding  example ,  bu t  O's 
and  2's are  genera ted  in u n e q u a l  p ropor t ions .  The  resu l t ing  d i s t r i bu t i on  is 

suppo r t ed  o n  the C a n t o r  set K, bu t  is s ingu la r  with respect to the un i fo rm 

d i s t r i b u t i o n  ~ r  on  tha t  set. We  chose p = 0.2, where  p is the p robab i l i t y  
of  gene ra t i ng  a "2" in to  the b i n a r y  string.  It follows tha t  

tr = 0,8 log 0.8 + 0.2 log 0.2 ,~ 0.4555 
log 3 

N o t e  the sha rp  increase  in the size of  s a n d  the range  of  the R , (X j  ) in 
T a b l e  VI. The  size of p represents  a l imi t a t ion  o n  this m e thod ;  as p ~ 0, 
the  f luc tua t ions  of  R , (X j )  increase,  a n d  a c o r r e s p o n d i n g  increase  in bo th  k 

a n d  n is r equ i red  to m a i n t a i n  coverage  probabi l i t ies .  

Example  4.5 .  A F r a c t a l  B i n a r y  D i s t r i b u t i o n .  Here  we take  
the b i n a r y  m a p  T(x)=2x (rood 1). I t e r a t i on  is pe r fo rmed  by  shift ing a 

Table Vl. Example 4.4" 

[r l ,  c.J s R ...... R ..... 

0.465 [0.402, 0.552 ] 2.932 - 6.252 13.852 
0.431 [(I.375, 0.507 ] 3.002 - 6.484 15.675 
0.500 [0.430, 0.596 ] 2.800 - 9.265 I 1.632 
0.425 [0.374, 0.491 ] 2.753 - 7.760 14.365 
0.519 [0.440, 0.633 ] 3.003 - 8.181 13.983 
0.498 [0.430, 0.591 ] 2.742 -- 6.167 I 1.694 
0.403 [0.358, 0.461 ] 2.704 - 3.736 13.726 
0.410 [0.357, 0.481 ] 3.125 -9.128 15.767 
0.429 [0.377, 0.499 ] 2.798 - 4.160 14.503 
0.583 [0.493, 0.713]* 2.713 -6.395 13.914 
0.486 [0.418, 0.5801 2.899 - 8.947 15.675 
0.465 [0.398, 0.558 ] 3.1 04 - 7.749 15.692 
0.491 [0.426, 0.580] 2.704 --9.645 11.368 
0.420 [0.368, 0.488 ] 2.889 - 6.448 15.182 
0.407 [0.359, 0.470] 2.857 - 5.899 11.537 
0.491 [0.422, 0.586 ] 2.856 - 7.331 l 1.275 
0.427 [0.373, 0.499] 2.935 - 11.572 16.969 
0.416 [0.364, 0.484] 2.956 -4.787 17.638 
0.439 [0.384, 0.513 ] 2.849 - 6.605 11.868 
0.448 [0.391, 0.524] 2.797 -6.203 14.783 

d i 

"a  = 0.4555, k = 300, n = 500, m = 5.0, t = 3300, observed coverage ,~, 92 %. 
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binary string of 50 O's and I's once to the left and generating a new 0 or 
1 into the 50th position. (This method of iteration is necessary in this par- 
ticular example because iterating this map algebraically results in all initial 
conditions being attracted to 0 within a finite number of steps. It is 
probably not necessary for the ternary map in Examples 4.3 and 4,4, but it 
does nicely illustrate the nature of the mixing property of these shift maps.) 
By generating O's and l's in unequal proportions, the resulting measure is 
singular with respect to Lebesgue measure. We set p = 0.2, where p is the 
long-run proportion of l's. Hence, this is an example where the attractor, 
being I-0, 1-1, is not a fractal set, but the distribution in question is a fracta! 
measure, having 

0.8 log 0.8 +0.2 log0.2 0.7219 
log 2 

Refer to Table VII. 

The following are examples of dynamical systems with higher-dimen- 
sional phase spaces. Because of limits on the computing equipment 

Table VII. Example 4.5" 

d [c 1, c d s Rmm Rtaa. 

0.746 [0.651, 0.872] 1.679 - 5.594 7.952 
0.735 [0.640, 0.863 ] 1.746 - 4.247 9.129 
0.725 [0.622, 0.869] 1.982 - 5.530 11.060 
0.640 [0.562, 0.742 ] 1.871 - 3.900 8.081 
0.737 [0.646, 0.858 ] 1.656 - 6.785 9.296 
0.634 [0.563, 0.725 ] 1.711 - 3.632 7.966 
0.642 [0.572, 0.731 ] 1.637 --2.118 8.196 
0.695 [0.608, 0.811 ] 1.781 -4.766 7.745 
0.776 [0.677, 0.909] 1.630 - 3.353 8.001 
0.763 [0.668, 0.890] 1.613 - 5.572 7.152 
0.644 [0.561, 0.755] !.986 -6.328 8.986 
0.775 [0.677, 0.906] 1.623 -4.618 6.885 
0.704 [0.626, 0.804 ] 1.524 - 3.249 6.017 
0.709 [0.623, 0.823 ] 1.687 - 5.756 6.501 
0.777 [0.678, 0.908 ] 1.615 -- 3.163 8.943 
0.679 [0.592, 0.797 ] 1.876 - 5.145 9.215 
0.739 [0.640, 0.873 ] 1.802 - 3.654 9.085 
0.614 [0.541, 0.708]* 1.890 -4.272 8.061 
0.703 [0.624, 0.805 ] 1.556 - 5.476 6.632 
0.708 [0.622, 0.821 ] 1.689 - 5.053 6.640 

i 

a a = 0.7219, k = 300, n = 500, m = 5.0, t = 3300, observed coverage ~ 95 %. 
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available and the prohibitive computing time required to do many simula- 
tions on small machines, it was not possible to obtain examples of systems 
with a large information dimension. The largest system studied was that of 
uniform random vectors in the unit cube in R 5. 

Example 4.6. Uniform Distribution in R s. Five-dimensional 
vectors were generated in the unit cube using a pseudorandom number 
generator. All basepoints and observations were sampled successively 
because of the good mixing properties of the generator. For k = 300 and 
m = 5, we found n = 4000 to be the minimum sample size able to provide 
approximate 95 % coverage. However, by using wider intervals (replace "2" 
by "3" in [ct, cu]) we found coverage in excess of 95 % with n = 3000. Note 
from Table VIII that the point estimate # usually underestimates the true 
value a = 5; this occurs because, for n = 4000, the expected value of Rn(Xj) 
slightly exceeds 1/5. This bias trails off very slowly as n increases. Compare 
the observed values of s with [0(5, 5)11/2 ~ 0.2254, the asymptotic standard 
deviation for smooth measures with a = 5 and m = 5. 

In the next three examples we used k = 400 and m = 7.0. This was done 

Table VIII. Example 4.6" 

# [C l, Cu] J,' Rmi n Rmax 

4.787 [4.269, 5.447] 0.219 -0.563 1.044 
4.661 [4.117, 5.369] 0.245 -0.565 1.154 
5.164 [4.537, 5.991 ] 0.232 -0.494 0.981 
4.878 [4.308, 5.621 ] 0.235 -0.471 1.070 
4.193 [3.762, 4.736]* 0.237 -0.528 1.113 
4.720 [4.201, 5.387] 0.227 -0.533 0.964 
4.720 [4.179, 5.422 ] 0.238 - 0.498 I. 124 
4.961 [4.364, 5.746] 0.239 -0.814 0.942 
4.970 [4.385, 5.734] 0.232 -0.723 0.781 
5.084 [4.495, 5.849] 0.223 -0.614 0.930 
4.533 [4.076, 5.104] 0.214 -0.426 0.917 
5.296 [4.607, 6.226] 0.244 -0.901 0.894 
4.799 I-4.228, 5.547] 0.244 -0.649 1.023 
5.081 [4.434, 5.948 ] 0.249 - 0.919 0.820 
4.660 [4.090, 5.414] 0.259 -0.753 1.276 
4.834 [4.282, 5.549 ] 0.231 - 0.684 1.011 
4.682 [4.166, 5.345 ] 0.229 - 0.498 0.915 
5.038 [4.40 I, 5.889 ] 0.249 - 1.099 0.900 
4.900 [4.321, 5.654] 0.236 -0.615 0.817 
4.552 [4.056, 5.187] 0.233 -0.494 1.220 

" o  = 5, k = 300, n = 4000, m = 5.0, t = 24300, observed coverage ~ 95 %. 
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to shorten the confidence intervals; k appears in the width of [c~, c,,] and 
larger values of m have a damping effect on variance. (However, it is not 
clear that increasing m is of sufficient value to justify the corresponding 
large increases in total sample size.) 

Example 4.7. The H6non Mapping.  Here we consider the well- 
known mapping ~36) in •2:T(x,y)=(y+l-ax2, bx) with the standard 
parameter values a =  1.4 and b=0.3 .  It is known that 1.21 ~<a~< 1.25, and 
evidence suggests that the corresponding distribution is semifractal, the 
attractor being Cantorian in one direction and composed of smooth lines 
in the other. The first 1000 iterates from this system were discarded, 
basepoints were sampled 20 iterates apart (this was found to be critical; 
sampling close together gave very poor results), and observations were 
sampled ten iterates apart (this may not have been necessary). See Table IX. 
For smooth measures in R 2 with m = 7.0, we have [0(2, 7)] 1/2 ~0.4661. 

Example 4.8. Cantor Distr ibut ion in R ~. Here we consider the 
Cartesian product K x K x K of the standard Cantor set K in [0, l ], and 

Table IX. Example 4.7" 

~: [ c  I, c,, ]  s R,,,,,~ R,.~,~ 

1.275 [- 1.165, 1.408] 0.740 - 1.529 
1.241 I-1.135, 1.368 ] 0.749 - 2.248 
1.231 [ 1.123, 1.363] 0.784 - 1.378 
1.128 [ 1.036, 1.238 ]* 0.784 - 2.331 
1.184 [I.088, 1.298] 0.745 - 1.494 
1.229 [1.131, 1.345] 0.704 - 1.438 
1.21 ! [ 1.112, 1.330] 0.738 - 1.418 
1.247 [1.137, 1.380] 0.776 - 1.680 
1.272 [1.155, 1.417] 0.802 -2 .555  
1.190 [1.085, 1.318] 0.814 - 1.853 
1.189 [1.096, 1.298] 0.713 - 1.844 
1.300 [1.188, 1.437] 0.728 - 1.617 
1.240 [1.139, 1.360] 0.715 -2 .287  
1.260 [ 1.148, 1.395 ] 0.770 - ! .689 
1.212 [1.108, 1.337] 0.771 - 1.742 
1.301 [1.181, 1.449] 0.784 - 1.744 
1.286 [1.165, 1.435] 0.807 -2 .134  
1.328 [1.212, 1.469] 0.723 - 1.571 
1.235 [1.129, 1.361 ] 0.755 - 1.764 
1.221 [1.115, 1.349] 0.781 -2 .417  

" 1.21 ~<a~< !.25, k =400,  n = 2 5 0 0 ,  m =  7.0, t = 20400, observed coverage ~ 9 4 %  
tions). 

3.932 
3.615 
4.549 
3.670 
3.490 
3.060 
4.303 
3.932 
3.549 
4.125 
4.115 
2.781 
3.824 
3.708 
3.405 
3.322 
4.235 
3.414 
3.464 
3.125 

i 

(35 simula- 
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the corresponding uniform distribution across this set. Here it is known 
that a ~ 1.8928. It is possible to describe this situation with a three-dimen- 
sional mapping composed of three ternary shift maps; however, we used 
the method of iterated function systems (IFS) (see Barnsley and Demko (2)) 
to reproduce the attractor and distribution. A random vector (x, y, z) was 
generated in the unit cube and iteration performed by applying the 
"random map" w(x, y, z) = (wl(x), w2(y), w3(z)), where each of Wl, w2, w3 
was chosen randomly and independently at each iteration from the set of 
two functions {ul(x)=x/3, u2(x)= 2/3 +x/3}. Since this IFS consists of 
contractive maps, it follows ~24) that for all initial conditions this system 
eventually settles on to the intended attracting set; if the maps u~ and u2 
are chosen with equal probability at each stage, then the distribution will 
be uniform. The result is a system which combines both deterministic and 
random components and possesses good mixing properties. The first 1000 
iterates were discarded. Basepoints were separated by ten iterations (again 
a necessary separation) and the two samples by 50 iterations. Observations 
within each sample were taken successively. For smooth measures we have 
[0(3, 7)]1/2,,~0.3107. See Table X. 

Table X. Example 4.8" 
I 

r [c1, c . ]  s R ..... R ...... 

1.824 [ 1.672, 2.006] (I.498 - 1.332 2.144 
1.966 [ 1.797, 2.170 ] 0.479 - (I.899 2.253 
1.824 [ 1.673, 2.004 ] 0.494 - 1.076 2.992 
1.732 [ 1.594, 1.896] (/.499 - 1.316 2.758 
2.027 [ 1.842, 2.253] 0.495 - 1.775 1.838 
1.844 [ 1.690, 2.(129 ] (I.495 - I. 146 2.188 
1.776 [ 1.642, 1.935] 0.461 - 1.064 2.724 
1.926 [ 1.763, 2.121 ] 0.479 - 1.198 2.253 
1,852 [1.707, 2.023] 0.458 - 1.011 2.175 
1.900 [1.731, 2.105] 0.513 - 0 . 9 9 6  2.562 
1.864 [ 1.702, 2.058 ] 0.508 - 1.556 2.379 
t.958 [1.803, 2.141 ] 0.437 - 0 . 8 7 2  1.973 
1.866 [ 1.711, 2.051 ] 0.485 - 1.264 2.330 
1.828 [ 1.686, 1.995] 0.460 - 0 . 8 4 2  2.345 
2.015 [ 1.83 I, 2.240] 0.498 - 1.599 1.976 
1.815 [ 1.662, 1.999] 0.507 - 0 . 9 4 6  2.698 
2.133 [ 1.934, 2 .377]* 0.482 - 0 . 9 9 6  2.068 
1.887 [ 1.720, 2.090] 0.514 - 1.748 2.316 
1.954 [ 1.786, 2.157 ] 0.481 - 1.199 2.359 
1.810 [1.664, 1.983] 0.484 - 0 . 6 4 0  2.704 

l l l l  I I 

" a  = 1.8928, k = 400, n = 2500, m = 7.0, t = 20400, observed coverage ,,~ 95 % (25 s imulat ions) .  



696 Cutler 

Example 4,9. A Fractal Cantor Distr ibut ion in I~ 3. We used 
the I F S  me thod  of the preceding example  to generate  the same a t t r ac to r  
K x  K x  K, but  chose the maps  u~ and u2 with probabi l i t ies  0.8 and 0.2, 
respectively,  to p roduce  a s ingular  measure  with a m  1.3665. No te  the 
increase in the observed values of  s from those ob ta ined  in the previous  
example.  See Table  XI. 

5. C O N C L U D I N G  R E M A R K S  

In this pape r  we have tried to present  an overview of  the theory  of 
d imens ion  in dynamica l  systems, followed by a discussion of some statist i-  
cal techniques for es t imat ing the corre la t ion  and informat ion  dimensions.  
In  Section 2 we developed a mathemat ica l  s t ructure  l inking the var ious  
definit ions of  d imension  and pointed out  some open problems.  In Section 3 
we saw that  the er ror  in least squares es t imates  of  the corre la t ion  d imen-  
sion can be split into two components ,  a systematic  e r ror  due to the 
inexact scaling of  the a t t rac t ing  measure  (shown to be a generic factor)  and 
the stat ist ical  e r ror  due to sampl ing  and est imation.  Methods  for coping 

Table Xl. Example 4.9" 

# [q, c,] s Rm,, Rm,, 

1.370 [1.246, 1.520] 0.722 - 1.670 3.380 
1.219 [1.109, 1.354]* 0.817 - 1.284 3.528 
1.346 [1.209, 1.517] 0.840 - 1.598 5.872 
1.237 1"1.126, 1.373] 0.798 - 1.840 3.735 
1.368 [ 1.241, 1.525 ] 0.751' - 1.324 3.388 
1.311 [1.183, 1.469] 0.820 - 1.843 3.966 
1.320 [1.181, 1.500] 0.891 -2.096 3.946 
1.255 [1.142, 1.393] 0.790 - 1.364 3.300 
1.428 [ 1.271, 1.629] 0.864 - 5.262 4.756 
1.348 [1.212, 1.518] 0.833 -2.413 3.901 
1.483 [1.339, 1.661 ] 0.726 - 1.659 3.685 
1.271 [1.153, 1.416] 0.804 -2.205 4.669 
1.333 [1.208, 1.486] 0.774 - 1.556 3.550 
1.285 [1.161, 1.440] 0.836 -2.470 4.108 
1.351 [1.211, 1.527] 0.856 -2.520 4.535 
1.372 [1.233, 1.546] 0.823 -2.559 3.679 
1.319 [1.194, 1.474] 0.794 - 1.303 3.935 
1.403 [1.243, 1.609] 0.916 -3.853 5.291 
1.408 [1.267, 1.584] 0.790 - 1.729 3.980 
1.354 [1.231, 1.505] 0.740 - 1.427 3.771 

a o= 1.3665, k =400, n = 2500, m = 7.0, t = 20400, observed coverage ~95% (25 simulations). 
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with both types of error were discussed, with particular success in the case 
of statistical error. In Section 4 we developed a nearest neighbor technique 
for constructing confidence intervals for the information dimension. This 
method appears to be an effective step toward establishing a statistical 
procedure with accurate error bounds. It is particularly appealing because 
it corrects for local density effect (thereby speeding up convergence in the 
case of highly nonuniform densities) and is applicable to a wide class of 
dynamical systems. It still remains to establish the appropriate rates of kn 
and n in Theorem4.1. Preliminary investigation suggests that the most 
important factor in determining the rate may be the true underlying dimen- 
sion tr [the corresponding most important "error" appears to be the dif- 
ference Ikt , -# l  in (B.6) of Appendix B], although we can also expect the 
degree of "fractalness" of the measure to affect convergence. It is possible 
that the rate may be as bad as k,  = o(n 2/') for tr >~ 2; however, our numeri- 
cal results indicate that almost satisfactory coverage can be obtained with 
reasonable sample sizes. This implies that the very large values of n 
required by a rate of k,  = o(n 2/~') are only necessary "in the tail," i.e., if one 
insists on 95 % coverage and is neither willing to accept a 93 % or 92 % 
coverage rate nor to widen the confidence interval slightly. It seems that 
satisfactory sample sizes and rates might be reasonably established numeri- 
cally by exhaustive simulation of known systems. For example, the choices 
k = 300, n = 500, and m = 5 seem to perform well for most systems on the 
unit interval. However, it may not be worthwhile to determine sample sizes 
at this stage because it is clear that using higher-order nearest neighbors 
(such as second, third, and fourth nearest neighbors) will lead to a substan- 
tial improvement in our method. Higher-order nearest neighbors are more 
stable (Cutler t~6J contains theoretical results on this) and will lead to 
shorter confidence intervals. We have had good success using higher-order 
nearest neighbors in the case of dynamical systems on the unit interval 
(generally reducing the width of intervals by 30-50%), but less success in 
higher dimensions, where the intervals often failed to cover, indicating 
inadequate sample sizes. Work on an improved procedure is in progress. 

APPENDIX  A. COMPLET ION OF PROOF OF T H E O R E M  2.2 

Let {r.}. be any sequence of real numbers such that r.~O and 
lira. ~ ~ (log r.+ ,/log r.)  = I. Define a.(x) = [log ~(B(x, r,,))/log r.] .  For 
r.  +, < r ~< r. we obtain the inequalities 

log r.~ log ~n(B(x, r)) ~< (lo_g r_~_+ ,.) (A.1) 
l--~grJ a'(x)<~ logr  a"+l(x)\ logr  
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which shows that the asymptotic behavior of log ~-4B(x, r))/log r is deter- 
mined by the behavior of the sequence of functions { a,, },,. We will need the 
following result. 

I . e m m a  A.1. Let C be a compact cube in W v and ~ a probability 
measure on the Borel sets of C. Let c(r) be any nonnegative function of r, 
and set E( r ) = { x ~ C I ~ (  B( x, r ) ) <~ c( r ) }. Then there exists a finite constant 
Ko (depending only on N and the diameter of C) such that ,m(E(r))<~ 
Koc(r) r ~ whenever r does not exceed the diameter of Co 

ProoL Since C is a compact cube in •N, there is a maximum number 
Ko r-N of balls of radius r (r ~< diameter of C) which can be centered at 
points of C in such a way that any two centers are at least the distance r 
apart. Since E(r) c C, we can find a covering g' of E(r) by balls of radius 
r with centers in E(r) such that any two centers are separated by at least 
the distance r. It follows that g' has at most Kor N members, each of whose 
m-measure does not exceed c(r), Consequently ~(E(r))<<. Koc(r)r N, as 
claimed. | 

It will follow that 

E (lira sup a.(X)) >~ lim sup E(cr,(X)) 

[and also E(lim,, ~ ~ a,(X))  = lira, ~ ~ E(a,(X))  in the case where apex) = 
a , ( x )  ,,~-a.s.] if we show that the functions h , ( x ) =  sup ak(X) are uniformly 

k>~n 
integrable. It is sufficient to check that h~(x)=supak(X)  is integrable. 
Noting that k ~> 

=({xlsupak(X)>N+l+j})=~,(U {XLak(X)>N+l+j}) 
k>>-I k>~l 

<. ~ ~({Xl~(B(x, rk))<rkU+~+J}} 
k=: l  

N + l + J r k N  Ko ~ "+~ <~ Ko rk = rk ~ 
k=l  k=l  

(using Lemma A.1), we obtain 

E(h, )<~(N+ 1)+  ~ (N+j+2)E(ItN+~+j<h=<~N+j+21) 
j = O  
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~<(N+I)+ ~ (N+j+2)~({x[sup~k(X)>N+l+j}) 
j = O  k>~l 

~(N+I)+ ~ (N+j+2)Ko ~ rk l + j  
j = O  k = l  

cJ'o 
+j  ~ < ( N + I ) + K o  ~ ( N + j + 2 )  rk 1 

k ~  1 1 = 0  

{ N +  1 1 ) 
= ( N + I ) + K o  r k [ ~ _ r k - t  (1 _-rk)2 

k = l  

~ < ( N + I ) + K *  ~ rk 
k = l  

for some constant Ko* 

= ( N +  1 ) + Ko* choosingrk=2 'k  

Hence hj is integrablc. This completes the proof of Theorem 2.2. | 

APPENDIX B. A CENTRAL LIMIT THEOREM FOR AN 
ARRAY OF EXCHANGEABLE VARIABLES 

As noted earlier, the following theorems are generalizations of 
problems #3,  4, p. 317 in Chow and TeicherJ 121 A special case of these 
results can be found in Blum et al. (~ 

Theorem B.1. Let I",./, n= 1, 2 .... and j =  1, 2 ..... k, ,  denote an 
array of random variables such that the variables within each row can be 
embedded in an infinite exchangeable sequence. Suppose there exists 
a common set of random variables Q such that Y,.t, Y,,z,..., Y,,.k, are 
conditionally i.i.d. (independent and identically-distributed) when condi- 
tioned on Q. Let I~, (Q)=E(Y~. i lQ)  and O,(Q)=Var(Y, , . / IQ)= 
E((Y, . / - /~, , (Q))ZlQ).  Let P denote the joint distribution of all the Y,,/ 
and the variables in Q, and let P* denote the distribution of the variables 
in Q alone. Suppose k,  --, ~ as n --+ ~ and the following three conditions 
are satisfied: 

There exists a value/1 such that k~/2(l~,,(Q)-#) e,., 0 

as n- -+~ (B.1) 

~22 (~2 ~ 4-13 
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There exists 0 > 0 such that lim P*(O,,(Q)> O)= 1 
t / ~ o O  

F,,.k,,,Q=k, ' ,/20,(Q ) 3/2 E(Iy,,./_I~,,(Q)I3I Q ) i,* 0 

Then 

Z..k,, 
s'k" Y,, / -k , , l~  

__ .  4, . . . , j  = I , .  

[k.O.(Q)] J/z 

(B.2) 

a s  / / ~  ~Y-) 

(B.3) 

converges in distribution to a standard Gaussian distribution with mean 0 
and variance 1 as n ---, oo. 

Proof. We first note that the exchangeability assumption guarantees 
for each n the existence of a set Q,, such that the variables in the nth row 
become i.i.d, when conditioned on Q,,, and in fact this theorem can be 
proven in this more general case. However, for our purposes it will be 
sufficient and notationally simpler to assume the existence of a common 
set Q which works for all n. Now write 

Z..k. = Z~"=, Y,,.j - k . # . ( Q )  + k . ( l l . ( Q ) -  I~) 
[k,,O,,(Q)] '/~ [k.O.(Q)]'/2 tB.4; 

Note that the second term on the rhs of Eq. (B.4) tends to 0 in probability 
as n--* ~ if conditions (B.I) and (B.2) hold. Hence we need only show that 
the first term on the rhs, which we will denote by Z,.~,.Q, converges in 
distribution to a Gaussian. Let ~ (y )=S .V,e - '2 /2 (2n)  l/2dt and define 
D,(q, y) = IP(Z,.k..Q <~ Y [ Q = q) - ~(y)l .  Then we have 

IP(Z,.k,,Q <~ y) -- ~(Y)I ~< f D,(q, y) P*(dq) {B.5) 

Now by the Berry-Esseen inequality for independent variables, there exists 
a universal constant C such that D,(q, y) <~ CIY'n.k..q for all y and P*-almost 
all q. Since D,(q, y) is bounded by 2, it follows from the bounded con- 
vergence theorem that the rhs of (B.5) tends to 0 as n -~ oo if condition 
(B.3) holds. Hence the theorem is proved. I 

We now need to replace conditions (B.1)-(B.3) by conditions which 
are more easily verified in practice. We obtain the following: 

T h e o r e m  B.2. Let Y,.j, n = 1, 2,... and j =  1, 2 ..... k, ,  denote an 
array of exchangeable random variables with common set Q as in 
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Theorem B.1. Let/~.(Q), 0,,(Q), and F..k., e be defined as in Theorem B.1. 
Set/~. = E ( # . ( Q ) ) =  E(Y. , j ) .  Suppose the following conditions are satisfied: 

Cov(Y..,, Y. . j )= o(knl), 
and there exists a value/~ such that 

I~,, - lal = o(k,, 1/2) (B.6) 

There exists 0 > 0 

and a sequence { a.  }. of positive constants 

with a.  --. a, 0 < a ~< ~ ,  such that 

Coy((Y. , , . /a . )  2, (Y.,j/a.) 2 ) = o(1) 

and Vat(Y.,j /a.)  ~ 0 (B.7) 

E ( t Y . J a . - m / a . I  3) = o(k,/2) 
for the sequence { a. }. defined 

in (B.7) (B.8) 

Then conditions (B.I)-(B.3) hold and the conclusions of Theorem B.! 
follow. 

Proof. Note that we may partition E(k,,(la;,(Q)-la) 2) as follows: 

E(k.(la.(Q) - p)2) = k.(tt.  _ 102 + E(k,,(p,,(Q) - l~,,) ~) 

= k.(#,, - It) 2 + k,, Var(it,,(Q)) (B.9) 

From (B.6) it follows immediately that the first term on the rhs of (B.9) 
tends to 0. To see that the second term also tends to 0, consider that 

Cov( Y,,,i0 Y,,,j) = E(Cov( Y.,,, Y.,j] Q)) 

+ Cov(E(Y . , , ]  Q ) , E ( Y . . j I Q ) )  (B.t0) 

Now the first term on the rhs of (B.10) vanishes because of the condi- 
tional independence of Y..i and Y..j  given Q, and we see that 
Coy(E( Y.,i t Q), E( Y.,j  IQ)) = Var(#,,(Q)). Hence from (B.6) we conclude 
E(k . (# . (Q) - /~ )2 )  ~ 0, which certainly implies (B.1). Now let {a.}.  be the 
sequence in (B.7), and define Y., j= Y. , j /a . ,  O.(Q)=O.(Q)/aZ., and 
f i . (Q)=l~ . (Q) /a . .  Let 0 be as in (B.7) and note that if ~i(Q) p~ 0, then 
(B.2) must follow (with some 0 < 0  in the role of 0 in that equation). 
Hence, to obtain (B.2) it suffices to show that 0.(Q)- eT, 0. Now write 

0.(Q) = E( ~'.2. i I Q) - ft.(Q)2 (B. 11 ) 



702 Cutler 

From the earlier work in this proof we know that ~,,(Q)2 e .  la2/a 2, where 
we define !~2/a2= 0 if a = ~ .  Now consider the first term on the rhs of 
(B.11). We see that 

E(E( ~ 2 Y.,j I Q)) = E( Y.,/)-2 = it./a.2 2 + Var(~',,./) --> #2/a2 + 0 

from (B.6), (B.7). Expressing Cov(Y,,.i,-2 ~-z..i) by conditioning on Q, as in 
(B.10), yields 

- - 2  ~ 2  Var(E( ~z. / l Q)) =Cov(  Y,.i, Y,,/) ~ 0 

-- 2 P* by (B.7). Thus, we conclude E(Y,,./IQ) , la2/aZ+ 0, giving the desired 
result O,(Q) e* O. It remains only to verify that (B.3) holds. Note we have 
the equality F,,,k,.o = F,,.k,.o where we define 

F,,.*..r =k.  '/20,,(O) 3/2 E(I ~'.,i-[t.(a)i ~ [ Q) (B.12) 

Hence it is sufficient to verify (B.3) for P..k..~:- Now, since OdQje--~ O, we 
need only consider the variable in the numerator of (B.12). Let/~. = #./a., 
and define h,,(Q)= [[t,,-:.(Q)l and 7".= l Y.,/-/~.I. We have the following 
inequality: 

~,,(Q)3/2 F,,,*.,o ~ k,, '/2E(T31Q)+ 3k. '/2h.(Q) E(T2. i Q) 

+ 3k.I/:h,,(Q)2E(T,,IQ)+k. l/2h,,(Q)3 (B.13) 

Now consider the first term on the rhs of (B.13). From (B.8) we see that 

k ;  '/ZE(E(T3 I Q)) = k ;  u2e(T~) --, 0 

and hence we must have kyl/2E(T3 I Q) e* O. Now h.(Q) e* 0 and 

max(E(T. [ Q), E(T2.1 Q))<~ 1 + E(T31 Q) 

so it follows that the remaining terms on the rhs of (B.13) also tend to 0 
in probability. This shows that (B.3) holds and completes the proof of the 
theorem. I 

APPENDIX C. APPLYING THE CENTRAL LIMIT THEOREM 
TO NEAREST NEIGHBORS 

In this Appendix we justify Theorem 4.1 by arguing that the condi- 
tions (B.6)--(B.8) of Theorem B.2 will be met by a variety of distributions 
~.  Set Y.,j=Rn(Xj), define Q =  U.~I S.,  and note that O(S.)=O.(Q) 
[where O(S.) is defined in Theorem4.1 and O.(Q) is defined in 
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Theorem B.I], We first show, under a very weak condition on ~ (which, 
surprisingly, involves the correlation dimension), that all moments of 
Rn(Xj) exist [and hence the conditional moments #n(Q) and On(Q) exist 
and are finite P*-a.s.]. Since 

1 
Rn(x+) = (log d , , . ( X j )  - log d2.mo(X+)) 

it is sufficient to consider the moments of log dl,~(Xj). Noting that 

log d,.,(Xj) = min log l[ Wl,u - Xj[I 
I<~u<~n 

E(I min log IIWI,u-Xj[I I)~<nE([log HW~.u-Xjll I) 
l<~u<~n 

we see that the problem reduces to considering the moments of 
log II W -  XJI, where W and X are two independent observations from ~. 

I .ornma 12.1. Let m be a probability distribution on a compact 
subset of R N such that the lower correlation dimension v = m  (1)>0.  
Then all moments of log I1 W -  XII exist. 

ProoL Let C(r) denote the correlation integral defined in (2.17). If 
v > 0, it follows that limr~o (log r)" r 6C(r) = 0 for every 0 < 6 < v and 
every positive integer n. Now consider that we may write 

E(llog [I W -  XII I")= E(llog II W -  XII I" Irll,, xH ~> J~) 

+ E(llog It W-X[I  ["ltllw XH<I ] ) (C . I )  

The first term on the rhs of (C.1) is bounded because of the compactness 
of the support of ~,. Now consider the second term, and note that 

E(l logl[W-Xll lnl f l fw_xl l<l])= (log r) n (C.2) 

Consider first n = 1. Integrating by parts yields 

;o fo l ( logr)  C(dr)= - I C(r)/rdr= - r ~ IC(r)/r~dr (C.3) 

for any 0 < 6 < v - .  As C ( r ) y  stays bounded as r ~ 0  and r ~ ~ is 
integrable, it follows that the first moment of log 11 W -  XI[ is finite. Higher 
moments (n >I 2) follow by a similar argument. | 

Thus, all quantities (conditional and unconditional moments) defined 
in Appendix B do exist in our application. It remains to indicate how 
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(B.6)-(B.8) are met. It is not possible to provide detailed proofs here, but 
we indicate the methods of proof and refer to results established in earlier 
papers. First note that we can write 

where 

�9 1 R . ( X ~ )  - L 2 , , . . ( X / )  - L ,  , , ( X i )  + _ (C.4) 
' a l o g  m cr 

(log d, .(Xfl 
L""(Xi)=al~ iogg~n ; )  

and L2 .... (Xj) is defined analogously for the second sample. Cutler and 
Dawson ~19'2~ considered the asymptotic behavior of L,,(X) in various situa- 
tions. We summarize the relevant points and conclusions below: 

I. Smooth Measures. If m is a smooth measure in lt~ N, then for 
~-almost all x, L.(x) converges in distribution to EV(log(K.g(x)), 1) 
where g(x) is the density of ~n at x, K. is a normalizing constant depending 
only on tr, and EV(a, b) denotes an extreme value distribution with loca- 
tion parameter a and scale parameter b, The distribution function of 
EV(a, b) is given by F ( y ) = e x p { - e x p [ - ( y - a ) / b ] }  for - ' f J  < y <  ~ ,  
and the mean and variance of EV(a, b) are 7 + a and b2~2/6 respectively 
(7 = Euler's constant). Convergence of all moments is also proven for a 
very wide class of smooth measures (in fact, by appealing to results of 
Pickands, t47J it would appear we can extend this class to essentially all 
smooth measures). It follows that for a random basepoint X, L,(X) con- 
verges in distribution to a compounded extreme value distribution with 
location parameter E(logK, g(X)) and scale parameter 1. Under mild 
restrictions we can expect the moments of L,(X) to also converge. (One 
necessary restriction, obviously, is that E(log g(X)) be finite.) As a conse- 
quence the asymptotic mean of L.(X) is ?+E(logK~g(X)) and the 
asymptotic variance is rt2/6. The limit theory of Theorem B.2 is applicable, 
taking a.  = 1 and R.(Xj)= Y.,j = ~'.,j. We have/~. = E(R.(Xj))~ 1/tr and 
Var(R,,(Xj))--* rc2/3(log m) 2 a 2 [both as a consequence of (C.4) and the 
moment convergence of LI,.(Xj) and L2,,,,.(Xj)]. Condition (B.8) follows 
(for any increasing rate k.) because of third moment convergence. It 
remains only to argue that the covariances in (B.6) and (B.7) vanish as 
n ~ oo (the actual rate k.  to be applied in the problem as a whole is 
determined by considering the various rates associated with the relevant 
quantities and selecting a rate which works for all). But it is not difficult 
to show that R.(X~) and R.(Xfl are asymptotically independent, and the 
convergence of moments therefore implies that the covariances vanish in 
the limit. I-Bickel and Breiman ~5~ established a vanishing rate of o(1/n) 
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for covariances of certain functions of nearest neighbors in the case of 
absolutely continuous measures.] Thus, (B.6)-(B.8) will hold for some rate 
kn. As noted in the concluding remarks, we expect the rate at which 
I E ( R n ( X ) ) -  l/crl ---, 0 to be the most important factor in determining rates 
and sample sizes. 

2. Fractal Measures. While the distribution of L, (x )  fails to con- 
verge in the fractal case, the damped quantity L,(X)/a(log n) 1/2 (where X 
is a randomly selected basepoint) asymptotically follows a Gaussian with 
mean 0 and some variance 0 > 0. Under mild restrictions, moments also 
converge. This gives Var(R,,(X))~ 2/(logm) 2 0(log n) and it can be seen 
from the form of 0 (given in Cutler and Dawson ~2~ that 0 is larger when 

is "more singular" or "more fractal." The limit theory of Theorem B.2 
is applicable here with a , = ( l o g n )  1/2, R , (X i )=  Yn,j, and, consequently, 
~'~,j=R,(Xj)/( logn) 1/2. We conclude that (B.7) and (B.8) hold and 
Cov(Rn(X,-), R,,(Xj)) ~ O, so it remains only to argue that E(R, (X))  ~ 1/a. 
From (C.4) it is equix, alent to show that E(L2,mn(X ) - Ll.n(X)) ~ O. Setting 
g(n)= E(L,(X)) ,  we note that g (n)=  o((logn)l/2). Hence, provided that 
g(n) does not have a nonvanishing oscillatory term (this seems a reason- 
able assumption), then l g ( n ) - g ( m n ) t  ~ 0 as required. [We may actually 
have g(n) converging as n-* oo, but rigorous results do not yet exist on 
this.] Numerically, we do observe R,, centering around 1/a over repeated 
simulations. 

3. Sem~[ractal Measures. Here, for fixed basepoints, L,,(x) oscillates 
between two extreme value distributions [whose centers are determined 
by the density g(x) and two constants reflecting the geometry of the 
supporting Cantor set] and moments stay bounded as n ~ oo. We expect 
that we may proceed as in the smooth case, taking a , =  1, under the 
assumption E( L2.,,,( X) - LI.,,( X) ) --, O. 
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